Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 381
Filtrar
1.
Front Vet Sci ; 11: 1351596, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628942

RESUMO

African swine fever (ASF) is a highly contagious and lethal viral disease that causes severe hemorrhagic fever in pigs. It keeps spreading around the world, posing a severe socioeconomic risk and endangering biodiversity and domestic food security. ASF first outbroke in China in 2018, and has spread to most provinces nationwide. Genotypes I and II ASF virus (ASFV) as the etiological pathogens have been found in China. In this study, three pairs of specific primers and probes targeting the ASFV B646L gene, F1055L gene, and E183L gene were designed to detect universal, genotype I, and genotype II strains, respectively. A triplex crystal digital PCR (cdPCR) was established on the basis of optimizing various reaction conditions. The assay demonstrated remarkably sensitive with low limits of detection (LODs) of 5.120, 4.218, 4.588 copies/reaction for B646L, F1055L, and E183L gene, respectively; excellent repeatability with 1.24-2.01% intra-assay coefficients of variation (CVs) and 1.32-2.53% inter-assay CVs; good specificity for only detection of genotypes I and II ASFV, without cross-reactivity with PCV2, PRV, SIV, PRRSV, PEDV, FMDV, and CSFV. The triplex cdPCR was used to test 1,275 clinical samples from Guangxi province of China, and the positivity rates were 5.05, 3.22, and 1.02% for genotype I, genotype II, and co-infection of genotypes I and II, respectively. These 1,275 clinical samples were also detected using a reported reference triplex real-time quantitative PCR (qPCR), and the agreements of detection results between these two methods were more than 98.98%. In conclusion, the developed triplex cdPCR could be used as a rapid, sensitive, and accurate method to detect and differentiate genotypes I and II strains of ASFV.

2.
Sci Rep ; 14(1): 9071, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643195

RESUMO

Cardiovascular disease (CVD) is closely associated with sarcopenia. We aimed to examine the relationship between Life's Essential 8 (LE8) and the incidence of sarcopenia among adults in the United States. In this study, a cross-sectional analysis was conducted using data from the National Health and Nutrition Examination Survey from 2013 to 2018 and included 5999 adult participants. LE8 score was categorized into low (< 49), moderate (49-79), and high CVH (≥ 79) groups and consisted of health behavior score and health factor score based on American Heart Association definitions. Sarcopenia was defined according to The Foundation for the National Institutes of Health Sarcopenia Project. Multivariate logistic regressions, restricted cubic spline regressions, and subgroup analyses were used to assess the association between LE8 and sarcopenia. LE8 and its subscales score were negatively associated with the incidence of sarcopenia in US adults.


Assuntos
Doenças Cardiovasculares , Sarcopenia , Estados Unidos/epidemiologia , Adulto , Humanos , Estudos Transversais , Inquéritos Nutricionais , Sarcopenia/epidemiologia , American Heart Association , Fatores de Risco
3.
Biosens Bioelectron ; 257: 116281, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677021

RESUMO

Environmental antibiotics and antibiotic resistance genes (ARGs) pose considerable threat to humans and animals; thus, the rapid and sensitive parallel detection of these pollutants from a single sample is urgently required. However, traditional multiplexed analytic technologies detect only one type of target (e.g., small molecules or nucleic acids) per assay. To address this issue, Evanescent wave Dual-color fluorescence Fiber-embedded Optofluidic Nanochip (EDFON) was fabricated by integrating a fiber-embedded optofluidic nanochip with evanescent wave dual-color fluorescence technology. The EDFON was used for the parallel quantitative detection of sulfamerazine (SMR) and MCR-1 with high sensitivity and specificity by combining a heterogeneous immunoassay with a homogenous hybridization chain reaction based on time-resolved effects. LODs of 0.032 µg/L and 35 pM was obtained for SMR and MCR-1, respectively, within 20 min. To our best knowledge, the EDFON is the first device for the simultaneous detection of two type of targets in each test, which is highly valuable to prevent the global threats of antibiotics and ARGs. Comparison with liquid chromatography-mass spectrometry showed a strong linear relationship (R2 = 0.998) for SMR pollution in the Qinghe River, with spiked SMR and MCR-1 negative surface and wastewater samples showing recovery rates of 91.8-113.4%. These results demonstrate the excellent accuracy and reliability of the EDFON, with features such as multi-analyte detection, field-deployment, and minimal-equipment, rendering it revolutionary for environmental monitoring, food safety, and medical diagnostics.


Assuntos
Antibacterianos , Técnicas Biossensoriais , Poluentes Químicos da Água , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Antibacterianos/análise , Antibacterianos/farmacologia , Poluentes Químicos da Água/análise , Limite de Detecção , Resistência Microbiana a Medicamentos/genética , Espectrometria de Fluorescência/métodos , Desenho de Equipamento , Fluorescência
4.
Dev Comp Immunol ; 156: 105181, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636698

RESUMO

Interferon regulatory factor 7 (IRF7) is considered the master regulator of virus-induced interferon (IFN) production. However, to avoid an autoimmune response, the expression of IRF7 must be tightly controlled. In this study, we report that zebrafish ubiquitin-specific protease 8 (USP8) promotes IRF7 degradation through an autophagy-lysosome-dependent pathway to inhibit IFN production. First, zebrafish usp8 is induced upon spring viremia of carp virus (SVCV) infection and polyinosinic/polycytidylic acid (poly I:C) stimulation. Second, overexpression of USP8 suppresses SVCV or poly I:C-mediated IFN expression. Mechanistically, USP8 interacts with IRF7 and promotes its degradation via an autophagy-lysosome-dependent pathway. Finally, USP8 significantly suppresses cellular antiviral responses and enhances SVCV proliferation. In summary, our discoveries offer a perspective on the role of zebrafish USP8 and provide additional understanding of the regulation of IRF7 in host antiviral immune response.


Assuntos
Autofagia , Fator Regulador 7 de Interferon , Fatores Reguladores de Interferon , Lisossomos , Rhabdoviridae , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Autofagia/imunologia , Lisossomos/metabolismo , Fator Regulador 7 de Interferon/metabolismo , Fator Regulador 7 de Interferon/genética , Rhabdoviridae/fisiologia , Rhabdoviridae/imunologia , Interferons/metabolismo , Poli I-C/imunologia , Infecções por Rhabdoviridae/imunologia , Proteólise , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Humanos , Imunidade Inata
5.
ACS Appl Mater Interfaces ; 16(13): 16494-16504, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507690

RESUMO

A novel bifunctional MOF-encapsulated cobalt-doped carbon dots nanozyme (Co-CD/PMOF) with excellent peroxidase-mimic catalytic activity and fluorescence property was synthesized and employed to fabricate a chemiluminescence/fluorescence (CL/FL) dual-mode immunosensor for AFB1 detection. Co-CD/PMOF could catalyze the luminol/H2O2 system to generate robust and long-lasting CL signals due to the slow diffusion effect and continuous generation of •OH, O2•-, and 1O2 species. Differing from traditional flash-type CL emissions, this glow-type CL emission is helpful to fabricate a sensitive and accurate CL sensing platform. Then the CL/FL dual-mode detection of AFB1 was developed using antibody-functionalized Co-CD/PMOF as the signal-amplifying nanoprobe. The CL mode assay based on indirect competitive immune principle was carried out on a chemiluminescence optical fiber platform, where the AFB1-OVA-functionalized optical fiber probe was employed for biorecognition, separation, and signal conducting. The AFB1 detection range and LOD were 0.63-69.36 ng/mL and 0.217 ng/mL, respectively. Using AFB1 antibody-functionalized immunomagnetic beads for capturing and separation, the FL mode detection of AFB1 was established based on the sandwich immune principle. A linear range of 0.54-51.91 ng/mL and a LOD of 0.027 ng/mL were obtained. This work designed a sensitive, rapid, and reliable nanozyme-powered dual-mode assay strategy and provided technical support in the field of environmental monitoring and food safety.


Assuntos
Técnicas Biossensoriais , Luminescência , Aflatoxina B1/análise , Carbono , Peróxido de Hidrogênio , Imunoensaio , Anticorpos , Limite de Detecção
6.
mBio ; 15(4): e0003124, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38501868

RESUMO

The Clp protease system is important for maintaining proteostasis in bacteria. It consists of ClpP serine proteases and an AAA+ Clp-ATPase such as ClpC1. The hexameric ATPase ClpC1 utilizes the energy of ATP binding and hydrolysis to engage, unfold, and translocate substrates into the proteolytic chamber of homo- or hetero-tetradecameric ClpP for degradation. The assembly between the hetero-tetradecameric ClpP1P2 chamber and the Clp-ATPases containing tandem ATPase domains from the same species has not been studied in depth. Here, we present cryo-EM structures of the substrate-bound ClpC1:shClpP1P2 from Streptomyces hawaiiensis, and shClpP1P2 in complex with ADEP1, a natural compound produced by S. hawaiiensis and known to cause over-activation and dysregulation of the ClpP proteolytic core chamber. Our structures provide detailed information on the shClpP1-shClpP2, shClpP2-ClpC1, and ADEP1-shClpP1/P2 interactions, reveal conformational transition of ClpC1 during the substrate translocation, and capture a rotational ATP hydrolysis mechanism likely dominated by the D1 ATPase activity of chaperones.IMPORTANCEThe Clp-dependent proteolysis plays an important role in bacterial homeostasis and pathogenesis. The ClpP protease system is an effective drug target for antibacterial therapy. Streptomyces hawaiiensis can produce a class of potent acyldepsipeptide antibiotics such as ADEP1, which could affect the ClpP protease activity. Although S. hawaiiensis hosts one of the most intricate ClpP systems in nature, very little was known about its Clp protease mechanism and the impact of ADEP molecules on ClpP. The significance of our research is in dissecting the functional mechanism of the assembled Clp degradation machinery, as well as the interaction between ADEP1 and the ClpP proteolytic chamber, by solving high-resolution structures of the substrate-bound Clp system in S. hawaiiensis. The findings shed light on our understanding of the Clp-dependent proteolysis in bacteria, which will enhance the development of antimicrobial drugs targeting the Clp protease system, and help fighting against bacterial multidrug resistance.


Assuntos
Adenosina Trifosfatases , Endopeptidase Clp , Streptomyces , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Proteólise , Adenosina Trifosfatases/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Peptídeo Hidrolases/metabolismo , Trifosfato de Adenosina/metabolismo
7.
J Hazard Mater ; 469: 134037, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38521032

RESUMO

Simple yet ultrasensitive and contamination-free quantification of environmental pathogenic bacteria is in high demand. In this study, we present a portable clustered regularly interspaced short palindromic repeats-associated protein 12a (CRISPR/Cas12a) powered Air-displacement enhanced Evanescent wave fluorescence Fiber-embedded microfluidic Biochip (AEFB) for the high-frequency and nucleic acid amplification-free ultrasensitive detection of Escherichia coli O157:H7. The performance of AEFB was dramatically enhanced upon employing a simple air-solution displacement process. Theoretical assays demonstrated that air-solution displacement significantly enhances evanescent wave field intensity on the fiber biosensor surface and increases the V-number in tapered fiber biosensors. Consequently, light-matter interaction is strengthened, and fluorescence coupling and collection efficiency are improved, considerably enhancing sensitivity. By integrating the CRISPR biosensing mechanism, AEFB facilitated rapid, accurate, nucleic acid amplification-free detection of E.coli O157:H7 with polymerase chain reaction (PCR)-level sensitivity (176 cfu/mL). To validate its practicality, AEFB was used to detect E.coli O157:H7 in surface water and wastewater. Comparison with RT-PCR showed a strong linear relationship (R2 = 0.9871), indicating the excellent accuracy and reliability of this technology in real applications. AEFB is highly versatile and can be easily extended to detect other pathogenic bacteria, which will significantly promote the high-frequency assessment and early-warning of bacterial contamination in aquatic environments.


Assuntos
Técnicas Biossensoriais , Escherichia coli O157 , Ácidos Nucleicos , Escherichia coli O157/genética , Sistemas CRISPR-Cas , Reprodutibilidade dos Testes , Microfluídica
8.
Cell Biochem Funct ; 42(2): e3961, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38425124

RESUMO

A substantial number of long noncoding RNAs (lncRNAs) have been identified as potent regulators of human disease. Human leukocyte antigen complex group 18 (HCG18) is a new type of lncRNA that has recently been proven to play an important role in the occurrence and development of various diseases. Studies have found that abnormal expression of HCG18 is closely related to the clinicopathological characteristics of many diseases. More importantly, HCG18 was also found to promote disease progression by affecting a series of cell biological processes. This article mainly discusses the expression characteristics, clinical characteristics, biological effects and related regulatory mechanisms of HCG18 in different human diseases, providing a scientific theoretical basis for its early clinical application.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/metabolismo
9.
Microorganisms ; 12(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38399820

RESUMO

Porcine deltacoronavirus (PDCoV) has shown large-scale global spread since its discovery in Hong Kong in 2012. In this study, a total of 4897 diarrheal fecal samples were collected from the Guangxi province of China from 2020 to 2023 and tested using RT-qPCR. In total, 362 (362/4897, 7.39%) of samples were positive for PDCoV. The S, M, and N gene sequences were obtained from 34 positive samples after amplification and sequencing. These PDCoV gene sequences, together with other PDCoV S gene reference sequences from China and other countries, were analyzed. Phylogenetic analysis revealed that the Chinese PDCoV strains have diverged in recent years. Bayesian analysis revealed that the new China 1.3 lineage began to diverge in 2012. Comparing the amino acids of the China 1.3 lineage with those of other lineages, the China 1.3 lineage showed variations of mutations, deletions, and insertions, and some variations demonstrated the same as or similar to those of the China 1.2 lineage. In addition, recombination analysis revealed interlineage recombination in CHGX-MT505459-2019 and CHGX-MT505449-2017 strains from Guangxi province. In summary, the results provide new information on the prevalence and evolution of PDCoV in Guangxi province in southern China, which will facilitate better comprehension and prevention of PDCoV.

10.
Nat Commun ; 15(1): 1659, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395953

RESUMO

Selenium is an essential multifunctional trace element in diverse organisms. The only Se-glycosyltransferase identified that catalyzes the incorporation of selenium in selenoneine biosynthesis is SenB from Variovorax paradoxus. Although the biochemical function of SenB has been investigated, its substrate specificity, structure, and catalytic mechanism have not been elucidated. Here, we reveal that SenB exhibits sugar donor promiscuity and can utilize six UDP-sugars to generate selenosugars. We report crystal structures of SenB complexed with different UDP-sugars. The key elements N20/T23/E231 contribute to the sugar donor selectivity of SenB. A proposed catalytic mechanism is tested by structure-guided mutagenesis, revealing that SenB yields selenosugars by forming C-Se glycosidic bonds via spontaneous deprotonation and disrupting Se-P bonds by nucleophilic water attack, which is initiated by the critical residue K158. Furthermore, we functionally and structurally characterize two other Se-glycosyltransferases, CbSenB from Comamonadaceae bacterium and RsSenB from Ramlibacter sp., which also exhibit sugar donor promiscuity.


Assuntos
Glicosiltransferases , Histidina/análogos & derivados , Compostos Organosselênicos , Selênio , Glicosiltransferases/metabolismo , Açúcares de Uridina Difosfato , Carboidratos , Açúcares , Especificidade por Substrato
11.
Nat Commun ; 15(1): 450, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38200015

RESUMO

Argonaute (Ago) proteins are ubiquitous across all kingdoms of life. Eukaryotic Agos (eAgos) use small RNAs to recognize transcripts for RNA silencing in eukaryotes. In contrast, the functions of prokaryotic counterparts (pAgo) are less well known. Recently, short pAgos in conjunction with the associated TIR or Sir2 (SPARTA or SPARSA) were found to serve as antiviral systems to combat phage infections. Herein, we present the cryo-EM structures of nicotinamide adenine dinucleotide (NAD+)-bound SPARSA with and without nucleic acids at resolutions of 3.1 Å and 3.6 Å, respectively. Our results reveal that the APAZ (Analogue of PAZ) domain and the short pAgo form a featured architecture similar to the long pAgo to accommodate nucleic acids. We further identified the key residues for NAD+ binding and elucidated the structural basis for guide RNA and target DNA recognition. Using structural comparisons, molecular dynamics simulations, and biochemical experiments, we proposed a putative mechanism for NAD+ hydrolysis in which an H186 loop mediates nucleophilic attack by catalytic water molecules. Overall, our study provides mechanistic insight into the antiphage role of the SPARSA system.


Assuntos
Bacteriófagos , Ácidos Nucleicos , NAD , RNA Guia de Sistemas CRISPR-Cas , Proteínas Argonautas/genética , Bacteriófagos/genética
12.
Acta Pharm Sin B ; 13(12): 5121-5134, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045062

RESUMO

Extracellular vesicles (EVs) have recently received much attention about the application of drug carriers due to their desirable properties such as nano-size, biocompatibility, and high stability. Herein, we demonstrate orange-derived extracellular vesicles (OEV) nanodrugs (DN@OEV) by modifying cRGD-targeted doxorubicin (DOX) nanoparticles (DN) onto the surface of OEV, enabling significantly enhancing tumor accumulation and penetration, thereby efficiently inhibiting the growth of ovarian cancer. The obtained DN@OEV enabled to inducement of greater transcytosis capability in ovarian cancer cells, which presented the average above 10-fold transcytosis effect compared with individual DN. It was found that DN@OEV could trigger receptor-mediated endocytosis to promote early endosome/recycling endosomes pathway for exocytosis and simultaneously reduce degradation in the early endosomes-late endosomes-lysosome pathway, thereby inducing the enhanced transcytosis. In particular, the zombie mouse model bearing orthotopic ovarian cancer further validated DN@OEV presented high accumulation and penetration in tumor tissue by the transcytosis process. Our study indicated the strategy in enhancing transcytosis has significant implications for improving the therapeutic efficacy of the drug delivery system.

13.
14.
Front Vet Sci ; 10: 1276505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026635

RESUMO

Porcine hemagglutinating encephalomyelitis virus (PHEV), porcine pseudorabies virus (PRV), classical swine fever virus (CSFV), and Japanese encephalitis virus (JEV) cause similar neurological symptoms in the infected pigs, and their differential diagnosis depends on laboratory testing. Four pairs of specific primers and probes were designed targeting the PHEV N gene, PRV gB gene, CSFV 5' untranslated region (5'UTR), and JEV NS1 gene, respectively, and a quadruplex real-time quantitative RT-PCR (qRT-PCR) was developed to detect and differentiate PHEV, PRV, CSFV, and JEV. The assay showed high sensitivity, with the limit of detection (LOD) of 1.5 × 101 copies/µL for each pathogen. The assay specifically detected only PHEV, PRV, CSFV, and JEV, without cross-reaction with other swine viruses. The coefficients of variation (CVs) of the intra-assay and the inter-assay were less than 1.84%, with great repeatability. A total of 1,977 clinical samples, including tissue samples, and whole blood samples collected from Guangxi province in China, were tested by the developed quadruplex qRT-PCR, and the positivity rates of PHEV, PRV, CSFV, and JEV were 1.57% (31/1,977), 0.35% (7/1,977), 1.06% (21/1,977), and 0.10% (2/1,977), respectively. These 1,977 samples were also tested by the previously reported qRT-PCR assays, and the coincidence rates of these methods were more than 99.90%. The developed assay is demonstrated to be rapid, sensitive, and accurate for detection and differentiation of PHEV, PRV, CSFV, and JEV.

15.
Chem Commun (Camb) ; 59(96): 14236-14248, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37964743

RESUMO

Supramolecular self-assembly in a biological system is usually dominated by sophisticated metabolic processes (chemical reactions) such as catalysis of enzymes and consumption of high energy chemicals, leading to groups of biomolecules with unique dynamics and functions in an aqueous environment. In recent years, increasing efforts have been made to couple chemical reactions to molecular self-assembly, with the aim of creating supramolecular materials with lifelike properties and functions. In this feature article, after summarising the work of chemical reaction mediated supramolecular hydrogels, we first focus on a typical example where dynamic self-assembly of molecular hydrogels is activated by in situ formation of a hydrazone bond in water. We discuss how the formation of the hydrazone-based supramolecular hydrogels can be controlled in time and space. After that, we describe transient assembly of supramolecular hydrogels powered by out-of-equilibrium chemical reaction networks regulated by chemical fuels, which show unique properties such as finite lifetime, dynamic structures, and regenerative capabilities. Finally, we provide a perspective on the future investigations that need to be done urgently, which range from fundamental research to real-life applications of dynamic supramolecular hydrogels.

16.
Heliyon ; 9(11): e22674, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034625

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 virus brings nasty crisis for public health in the world. Until now, the virus has caused multiple infections in many people. Detecting antigen to SARS-CoV-2 is a powerful method for the diagnosis of COVID-19 and is helpful for controlling and stopping the pandemic. Herein, a rapid and quantitative detection method of SARS-CoV-2 spike(S) protein was built based on the fluorescence resonance energy transfer (FRET) phenomenon without complicated steps. In the process of detecting, the carbon quantum dots (CQDs) and gold nanoparticles (AuNPs) act as donor and acceptor. By modifying the SARS-CoV-2 antibodies on the surface of CQDs and AuNPs, we achieved S protein specific detection using the distance-based FRET phenomenon. Through the electric charge regulation, the limit of detection (LOD) is 0.05 ng/mL, the linear range is 0.1-100 ng/mL, and the detection process only takes 12 min. The proposed method exhibits several advantages such as be available for variants (B.1.1.529 and B.1.617.2) and be suitable for human serum, which is of significance for detecting viral in time and prevention the viral transmission.

17.
J Agric Food Chem ; 71(49): 19568-19580, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38019936

RESUMO

Septins are a conserved group of GTP-binding proteins found in all eukaryotes and are the fourth-most abundant cytoskeletal proteins. Septins of some pathogenic fungi are involved in morphological changes related to infection. Our previous studies have identified four core septins (StSep1-4) in Setosphaeria turcica, the causal agent of northern corn leaf blight, while only StSep4 is significantly upregulated during the invasive process. We therefore used forchlorfenuron (FCF), the specific inhibitor of septin, and ΔStSep4 knockout mutants to further clarify the role of septins in S. turcica pathogenicity. FCF treatment caused a dose-dependent reduction in S. turcica colony growth, delayed the formation of infection structures, and reduced the penetration ability. ΔStSep4 knockout mutants displayed abnormal mycelium morphology, slow mycelial growth, conidiation deficiency, delayed appressorium development, and weakened pathogenicity. StSep4 deletion also broke cell wall integrity, altered chitin distribution, decreased the melanin content, and disrupted normal nuclear localization. A transcriptomic comparison revealed that genes differentially expressed between ΔStSep4 and WT were enriched in terms of ribosomes, protein translation, membrane components, and transmembrane transport activities. Our results demonstrate that StSep4 is required for morphology and pathogenicity in S. turcica, making it a promising target for the development of novel fungicides.


Assuntos
Septinas , Fatores de Virulência , Septinas/genética , Septinas/metabolismo , Virulência , Parede Celular/genética , Parede Celular/metabolismo
18.
Front Vet Sci ; 10: 1278714, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929278

RESUMO

African swine fever virus (ASFV) was first identified in 1921 and is extensively prevalent around the world nowadays, which has a significant negative impact on the swine industry. In China, genotype II ASFV was first discovered in 2018, and has spread quickly to different provinces in a very short time; genotype I ASFV was first found in 2020, and has been reported in several provinces since then. To establish an accurate method for detection and differentiation of genotypes I and II ASFV, three primers and probes were designed targeting the ASFV B646L gene for different genotypes, the F1055L gene for genotype I, and the E183L gene for genotype II, and a triplex real-time quantitative PCR (qPCR) for differential detection of genotypes I and II ASFV was developed after optimizing the reaction conditions. The assay showed high sensitivity, and the limits of detection (LOD) of the B646L, F1055L, and E183L genes were 399.647 copies/reaction, 374.409 copies/reaction, and 355.083 copies/reaction, respectively; the coefficients of variation (CVs) of the intra-assay and the inter-assay were 0.22-1.88% and 0.16-1.68%, respectively, showing that this method had good repeatability; the assay could detect only ASFV, without cross-reactivity with other swine viruses including PRRSV, PEDV, PDCoV, CSFV, PRV, and PCV2, showing excellent specificity of this method. A total of 3,519 clinical samples from Guangxi province, southern China, were tested by the developed assay, and 8.16% (287/3,519) samples were found to be positive for ASFV, of which 0.17% (6/3,519) samples were positive for genotype I, 7.19% (253/3,519) samples for genotype II, and 0.80% (28/3,519) samples for genotypes I and II. At the same time, these clinical samples were also tested by a previously reported multiplex qPCR, and the agreement between these two methods was more than 99.94%. In summary, the developed triplex qPCR provided a fast, specific and accurate method for detection and differentiation of genotypes I and II ASFV.

19.
Analyst ; 148(23): 6120-6129, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37929744

RESUMO

The overuse and abuse of antibiotics have led to increased pollution in water environments. Thus, it is crucial to develop a rapid, high-frequency, and cost-effective method for on-site detection of antibiotics. In this regard, a reusable fiber-embedded microfluidic chip was constructed by combining a microfluidic chip with a functionalized fiber bioprobe that served as both a biorecognition element and an optical transducer. The fiber-embedded microfluidic chip enabled the quantitative detection of kanamycin (KANA) by integrating a portable all-fiber evanescent wave fluorescence detection device. Under optimized conditions, quantitative KANA detection was achieved with a detection limit of 0.03 µg L-1 and a linear detection range of 0.21-10.3 µg L-1. The accurate detection of KANA in various water samples can be completed within 25 min without pretreatment. The functionalized fiber-embedded microfluidic chip could be reused more than 200 times without significant performance loss. To demonstrate its suitability for practical applications, the fiber-embedded microfluidic chip was used to investigate KANA residues in surface waters obtained from the Qinghe River in Beijing, China. The results were compared with those of a traditional enzyme-linked immunosorbent assay, which showed a high correlation. Compared to conventional optical microfluidic chips, the proposed fiber-embedded microfluidic chip has several advantages, including its ease of use, miniaturization, cost-effectiveness, reusability, and high flexibility. It is an ideal alternative for rapid, sensitive on-site detection of antibiotics and other trace substances in environmental, food, and medical fields.


Assuntos
Canamicina , Microfluídica , Antibacterianos , Poluição Ambiental , Água
20.
Nanoscale ; 15(42): 17097-17104, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37849340

RESUMO

The need to use hydrogen (H2) gas has increasingly become important due to the growing demand for carbon-free energy sources. However, the explosive nature of H2 gas has raised significant safety concerns, driving the development of efficient and reliable detection. Although 2D materials have emerged as promising materials for hydrogen gas sensing applications due to their relatively high sensitivity, the incorporation of other nanomaterials into 2D materials can drastically improve both the selectivity and the sensitivity of sensors. In this work, high-entropy alloy nanoparticles using non-noble metals were used to develop a sensor for H2 gas detection. This chemical sensor was realized by decorating 2D MoS2 surfaces with multicomponent body-centered cubic (BCC) equiatomic Ti-Zr-V-Nb-Hf high-entropy alloy (HEA) nanoparticles. It was selective towards H2, over NH3, H2S, CH4, and C4H10, demonstrating widespread applications of this sensor. To understand the mechanisms behind the abnormal selectivity and sensitivity, density functional theory (DFT) calculations were performed, showing that the HEA nanoparticles can act as a chemical hub for H2 adsorption and dissociation, ultimately improving the performance of 2D material-based gas sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...