Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (159)2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32478717

RESUMO

Microtubules (MTs) play critical roles in neuronal development, but many questions remain about the molecular mechanisms of their regulation and function. Furthermore, despite progress in understanding postsynaptic MTs, much less is known about the contributions of presynaptic MTs to neuronal morphogenesis. In particular, studies of in vivo MT dynamics in Drosophila sensory dendrites yielded significant insights into polymer-level behavior. However, the technical and analytical challenges associated with live imaging of the fly neuromuscular junction (NMJ) have limited comparable studies of presynaptic MT dynamics. Moreover, while there are many highly effective software strategies for automated analysis of MT dynamics in vitro and ex vivo, in vivo data often necessitate significant operator input or entirely manual analysis due to inherently inferior signal-to-noise ratio in images and complex cellular morphology.  To address this, this study optimized a new software platform for automated and unbiased in vivo particle detection. Multiparametric analysis of live time-lapse confocal images of EB1-GFP labeled MTs was performed in both dendrites and the NMJ of Drosophila larvae and found striking differences in MT behaviors. MT dynamics were furthermore analyzed following knockdown of the MT-associated protein (MAP) dTACC, a key regulator of Drosophila synapse development, and identified statistically significant changes in MT dynamics compared to wild type. These results demonstrate that this novel strategy for the automated multiparametric analysis of both pre- and postsynaptic MT dynamics at the polymer-level significantly reduces human-in-the-loop criteria. The study furthermore shows the utility of this method in detecting distinct MT behaviors upon dTACC-knockdown, indicating a possible future application for functional screens of factors that regulate MT dynamics in vivo. Future applications of this method may also focus on elucidating cell type and/or compartment-specific MT behaviors, and multicolor correlative imaging of EB1-GFP with other cellular and subcellular markers of interest.


Assuntos
Dendritos/metabolismo , Drosophila melanogaster/metabolismo , Imageamento Tridimensional , Microtúbulos/metabolismo , Junção Neuromuscular/metabolismo , Imagem Individual de Molécula , Sinapses/metabolismo , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Larva/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Interferência de RNA , Software
2.
Cytoskeleton (Hoboken) ; 71(3): 195-209, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24520051

RESUMO

The Abelson (Abl) non-receptor tyrosine kinase regulates the cytoskeleton during multiple stages of neural development, from neurulation, to the articulation of axons and dendrites, to synapse formation and maintenance. We previously showed that Abl is genetically linked to the microtubule (MT) plus end tracking protein (+TIP) CLASP in Drosophila. Here we show in vertebrate cells that Abl binds to CLASP and phosphorylates it in response to serum or PDGF stimulation. In vitro, Abl phosphorylates CLASP with a Km of 1.89 µM, indicating that CLASP is a bona fide substrate. Abl-phosphorylated tyrosine residues that we detect in CLASP by mass spectrometry lie within previously mapped F-actin and MT plus end interaction domains. Using purified proteins, we find that Abl phosphorylation modulates direct binding between purified CLASP2 with both MTs and actin. Consistent with these observations, Abl-induced phosphorylation of CLASP2 modulates its localization as well as the distribution of F-actin structures in spinal cord growth cones. Our data suggest that the functional relationship between Abl and CLASP2 is conserved and provides a means to control the CLASP2 association with the cytoskeleton.


Assuntos
Actinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Adesão Celular/efeitos dos fármacos , Chlorocebus aethiops , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/metabolismo , Células HEK293 , Humanos , Proteínas Associadas aos Microtúbulos/química , Microtúbulos/efeitos dos fármacos , Dados de Sequência Molecular , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Xenopus
3.
PLoS Genet ; 9(11): e1003958, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24278035

RESUMO

Neurofibromatosis type 1 (NF1), a genetic disease that affects 1 in 3,000, is caused by loss of a large evolutionary conserved protein that serves as a GTPase Activating Protein (GAP) for Ras. Among Drosophila melanogaster Nf1 (dNf1) null mutant phenotypes, learning/memory deficits and reduced overall growth resemble human NF1 symptoms. These and other dNf1 defects are relatively insensitive to manipulations that reduce Ras signaling strength but are suppressed by increasing signaling through the 3'-5' cyclic adenosine monophosphate (cAMP) dependent Protein Kinase A (PKA) pathway, or phenocopied by inhibiting this pathway. However, whether dNf1 affects cAMP/PKA signaling directly or indirectly remains controversial. To shed light on this issue we screened 486 1(st) and 2(nd) chromosome deficiencies that uncover >80% of annotated genes for dominant modifiers of the dNf1 pupal size defect, identifying responsible genes in crosses with mutant alleles or by tissue-specific RNA interference (RNAi) knockdown. Validating the screen, identified suppressors include the previously implicated dAlk tyrosine kinase, its activating ligand jelly belly (jeb), two other genes involved in Ras/ERK signal transduction and several involved in cAMP/PKA signaling. Novel modifiers that implicate synaptic defects in the dNf1 growth deficiency include the intersectin-related synaptic scaffold protein Dap160 and the cholecystokinin receptor-related CCKLR-17D1 drosulfakinin receptor. Providing mechanistic clues, we show that dAlk, jeb and CCKLR-17D1 are among mutants that also suppress a recently identified dNf1 neuromuscular junction (NMJ) overgrowth phenotype and that manipulations that increase cAMP/PKA signaling in adipokinetic hormone (AKH)-producing cells at the base of the neuroendocrine ring gland restore the dNf1 growth deficiency. Finally, supporting our previous contention that ALK might be a therapeutic target in NF1, we report that human ALK is expressed in cells that give rise to NF1 tumors and that NF1 regulated ALK/RAS/ERK signaling appears conserved in man.


Assuntos
Drosophila melanogaster/genética , Transtornos da Memória/genética , Neurofibromatose 1/genética , Quinase do Linfoma Anaplásico , Animais , AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Transtornos da Memória/patologia , Mutação , Neurofibromatose 1/metabolismo , Neurofibromatose 1/fisiopatologia , Junção Neuromuscular/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/genética , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo
4.
Wiley Interdiscip Rev Dev Biol ; 2(6): 747-65, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24123935

RESUMO

During development, precise formation of millions of synaptic connections is critical for the formation of a functional nervous system. Synaptogenesis is a complex multistep process in which axons follow gradients of secreted and cell surface guidance cues to reach their target area, at which point they must accurately distinguish their specific target. Upon target recognition, the axonal growth cone undergoes rapid growth and morphological changes, ultimately forming a functional synapse that continues to remodel during activity-dependent plasticity. Significant evidence suggests that the underlying actin and microtubule (MT) cytoskeletons are key effectors throughout synaptogenesis downstream of numerous receptors and signaling pathways. An increasing number of cytoskeletal-associated proteins have been shown to influence actin and MT stability and dynamics and many of these regulators have been implicated during synaptic morphogenesis using both mammalian and invertebrate model systems. In this review, we present an overview of the role cytoskeletal regulators play during the formation of the Drosophila neuromuscular junction.


Assuntos
Proteínas do Citoesqueleto/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , Junção Neuromuscular/genética , Sinapses/genética , Animais , Proteínas do Citoesqueleto/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Cones de Crescimento/metabolismo , Cones de Crescimento/ultraestrutura , Larva/crescimento & desenvolvimento , Larva/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Sistema Nervoso/metabolismo , Sistema Nervoso/ultraestrutura , Neurogênese/genética , Junção Neuromuscular/metabolismo , Junção Neuromuscular/ultraestrutura , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Sinapses/ultraestrutura , Transmissão Sináptica/fisiologia
5.
Dev Dyn ; 242(7): 861-73, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23606306

RESUMO

BACKGROUND: The process of axon guidance is important in establishing functional neural circuits. The differential expression of cell-autonomous axon guidance factors is crucial for allowing axons of different neurons to take unique trajectories in response to spatially and temporally restricted cell non-autonomous axon guidance factors. A key motivation in the field is to provide adequate explanations for axon behavior with respect to the differential expression of these factors. RESULTS: We report the characterization of a predicted secreted semaphorin family member, semaphorin2b (Sema-2b) in Drosophila embryonic axon guidance. Misexpression of Sema-2b in neurons causes highly penetrant axon guidance phenotypes in specific longitudinal and motoneuron pathways; however, expression of Sema-2b in muscles traversed by these motoneurons has no effect on axon guidance. In Sema-2b loss-of-function embryos, specific motoneuron and interneuron axon pathways display guidance defects. Specific visualization of the neurons that normally express Sema-2b reveals that this neuronal cohort is strongly affected by Sema-2b loss-of-function alleles. CONCLUSIONS: While secreted semaphorins have been implicated as cell non-autonomous chemorepellants in a variety of contexts, here we report previously undescribed Sema-2b loss-of-function and misexpression phenotypes that are consistent with a cell-autonomous role for Sema-2b.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Drosophila/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Semaforinas/metabolismo , Animais , Axônios/metabolismo , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Semaforinas/genética
6.
Mol Cell Biol ; 33(8): 1528-45, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23382075

RESUMO

The microtubule (MT) plus-end tracking protein (+TIP) CLASP mediates dynamic cellular behaviors and interacts with numerous cytoplasmic proteins. While the influence of some CLASP interactors on MT behavior is known, a comprehensive survey of the proteins in the CLASP interactome as MT regulators is missing. Ultimately, we are interested in understanding how CLASP collaborates with functionally linked proteins to regulate MT dynamics. Here, we utilize multiparametric analysis of time-lapse MT +TIP imaging data acquired in Drosophila melanogaster S2R+ cells to assess the effects on individual microtubule dynamics for RNA interference-mediated depletion of 48 gene products previously identified to be in vivo genetic CLASP interactors. While our analysis corroborates previously described functions of several known CLASP interactors, its multiparametric resolution reveals more detailed functional profiles (fingerprints) that allow us to precisely classify the roles that CLASP-interacting genes play in MT regulation. Using these data, we identify subnetworks of proteins with novel yet overlapping MT-regulatory roles and also uncover subtle distinctions between the functions of proteins previously thought to act via similar mechanisms.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Interfase , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/fisiologia , Animais , Linhagem Celular , Proteínas de Drosophila/análise , Proteínas de Drosophila/genética , Proteínas de Fluorescência Verde/genética , Proteínas Associadas aos Microtúbulos/análise , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Mapeamento de Interação de Proteínas , Interferência de RNA , RNA Interferente Pequeno
7.
Dev Cell ; 22(2): 238-9, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22340490

RESUMO

Dominant VAPB mutations are implicated in neurodegenerative disease, including amyotrophic lateral sclerosis and spinal muscular atrophy. In the current issue, Han et al. (2012) uncover a mechanism through which the secreted VAPB MSP domain regulates actin organization and mitochondrial function in muscle cells through LAR and Robo receptor activation.

8.
J Neurosci Methods ; 184(1): 124-8, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19651158

RESUMO

Perivascular sympathetic innervation density (PSID) is a key determinant of vasomotor responses to sympathetic nerve activity. However, total axonal length (for en passant neurotransmission) per vessel surface area has not been well defined, particularly while preserving 3-dimensional vascular structure. We developed a novel method for quantifying PSID using 3-dimensional anatomical reconstruction and compare a variety of blood vessels in Young (3 months) and Old (20 months) male C57BL/6 mice. Individual vessels were dissected and immunolabeled for tyrosine hydroxylase. The total length of fluorescent axons in defined vessel surface areas was quantified by mapping Z-stack images (magnification=760x). For Young mice, innervation densities (mum axon length/mum(2) vessel surface area) in mesenteric (0.075+/-0.002) and femoral (0.080+/-0.003) arteries were greater (P<0.05) than mesenteric veins (0.052+/-0.002) and gracilis muscle feed arteries (0.040+/-0.002). Carotid arteries and gracilis muscle veins were not immunoreactive nor were there significant differences in PSID between Young and Old animals. We demonstrate a novel approach to quantify sympathetic innervation of the vasculature while preserving its 3-dimensional structure and document regional variation in PSID that persists with aging in mice. This analytical approach may be used for quantifying PSID in other tissues that have superficial vessels which can be studied in situ or from which embedded vessels can be excised. With appropriate visualization of neuronal projections, it may also be applied to tissues that have other sources of superficial innervation.


Assuntos
Envelhecimento , Artérias/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Neurônios/citologia , Sistema Nervoso Simpático/anatomia & histologia , Veias/anatomia & histologia , Animais , Artérias/crescimento & desenvolvimento , Artérias/inervação , Axônios , Fluorescência , Imageamento Tridimensional/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência/métodos , Modelos Anatômicos , Sistema Nervoso Simpático/crescimento & desenvolvimento , Tirosina 3-Mono-Oxigenase/metabolismo , Veias/crescimento & desenvolvimento , Veias/inervação
9.
Dev Biol ; 334(1): 119-32, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19631637

RESUMO

Sympathetic nerve activity regulates blood pressure by altering peripheral vascular resistance. Variations in vascular sympathetic innervation suggest that vascular-derived cues promote selective innervation of particular vessels during development. As axons extend towards peripheral targets, they migrate along arterial networks following gradients of guidance cues. Collective ratios of these gradients may determine whether axons grow towards and innervate vessels or continue past non-innervated vessels towards peripheral targets. Utilizing directed neurite outgrowth in a three-dimensional (3D) co-culture, we observed increased axon growth from superior cervical ganglion explants (SCG) towards innervated compared to non-innervated vessels, mediated in part by vascular endothelial growth factor (VEGF-A) and Semaphorin3A (Sema3A) which both signal via neuropilin-1 (Nrp1). Exogenous VEGF-A, delivered by high-expressing VEGF-A-LacZ vessels or by rhVEGF-A/alginate spheres, increased sympathetic neurite outgrowth while exogenous rhSema3A/Fc decreased neurite outgrowth. VEGF-A expression is similar between the innervated and non-innervated vessels examined. Sema3A expression is higher in non-innervated vessels. Spatial gradients of Sema3A and VEGF-A may promote differential Nrp1 binding. Vessels expressing high levels of Sema3A favor Nrp1-PlexinA1 signaling, producing chemorepulsive cues limiting sympathetic neurite outgrowth and vascular innervation; while low Sema3A expressing vessels favor Nrp1-VEGFR2 signaling providing chemoattractive cues for sympathetic neurite outgrowth and vascular innervation.


Assuntos
Artérias/inervação , Semaforina-3A/metabolismo , Sistema Nervoso Simpático/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Padronização Corporal , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Neovascularização Fisiológica/fisiologia , Neuritos/metabolismo , Neurogênese
10.
J Comp Neurol ; 455(2): 260-9, 2003 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-12454990

RESUMO

One of the features common among olfactory systems for vertebrate and invertebrate species is the division of the primary processing area into distinct clumps of synaptic neuropil, called glomeruli. The olfactory glomeruli appear to serve as functional units of olfaction and are the location of the primary processing between chemosensory afferents and second-order neurons. Although glomeruli are found across all phyla, their numbers and size appear to be characteristic for each species, giving rise to the speculation that there is a relationship between glomerular number and function. It has been hypothesized, for example, that animals with more glomeruli may be able to resolve a wider range of odors. Crustacean species are distributed among freshwater, marine, and terrestrial habitats in arctic, temperate, and tropical climates. They also exhibit a variety of lifestyles and behaviors in which olfaction may play a dominant role. Feeding, for example, ranges from carnivorous, through subaquatic and terrestrial omnivorous scavenging, to filter feeding. Mating and territorial behaviors also are known to involve chemical signals. The current study examines glomerular numbers in the olfactory lobes of 17 crustacean species from six of the seven taxa now included in the reptantian decapods. Estimates of the glomerular numbers were obtained from the analysis of sectioned material treated immunocytochemically with an antibody against synapsin that labels proteins contained in neuronal terminals. The numbers of glomeruli found in the different species were then compared with the volume of the glomerular neuropil, numbers of olfactory sensilla, life styles, habitat, and phylogenetic affinities. The picture that emerges from these correlations is that the decapod crustaceans have exploited various strategies in the construction of their olfactory systems in which the problems of size, sensitivity, and selectivity have all interacted. We find a continuum across the groups ranging from those that favor a high convergence of receptor neurons onto a few glomeruli to those that share a small number of receptor neurons among many glomeruli. The potential functional consequences of these differences are discussed.


Assuntos
Decápodes/anatomia & histologia , Neurópilo/citologia , Bulbo Olfatório/anatomia & histologia , Filogenia , Animais , Decápodes/metabolismo , Imuno-Histoquímica , Neurópilo/metabolismo , Bulbo Olfatório/metabolismo , Especificidade da Espécie , Sinapsinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA