Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Gastroenterol Clin North Am ; 53(3): 413-430, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39068003

RESUMO

In this review, the authors outlined concepts and strategies to achieve immune tolerance through inducing hematopoietic chimerism after solid organ transplantation and introduced challenges and opportunities in harnessing two-way alloresponses to improve outcomes after intestinal transplantation (ITx). Next, the authors discussed the dynamics and phenotypes of peripheral blood and intestinal graft T-cell subset chimerism and their association with outcomes. The authors also summarized studies on other types of immune cells after ITx and their potential participation in chimerism-mediated tolerance. The authors further discussed strategies and future directions to promote chimerism-associated tolerance after ITx to overcome rejection and minimize immunosuppression.


Assuntos
Intestinos , Quimeras de Transplante , Humanos , Intestinos/transplante , Intestinos/imunologia , Quimeras de Transplante/imunologia , Tolerância ao Transplante/imunologia , Quimerismo , Transplante de Órgãos/métodos , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Tolerância Imunológica
2.
J Appl Res Intellect Disabil ; 37(5): e13286, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39075798

RESUMO

BACKGROUND: Parents' conceptualizations of adulthood for their emerging adults with Down syndrome have the potential to impact the transition planning process as families prepare for life after graduation. AIMS: This study aimed to explore parent perceptions of the meaning of adulthood for their emerging adults with Down syndrome. METHODS: In this qualitative study, we interviewed 11 parents of emerging adults with Down syndrome using phenomenological methodology and analysed these data using thematic analysis. RESULTS: Three topics emerged: (1) Parents' constructions of the meaning of adulthood; (2) Parents' perceptions about the transition to adulthood; and (3) Parents' perceptions of current adult life skills. Ten themes arose out of these topics. CONCLUSIONS: Parents expressed ambivalence about the meaning of adulthood for their emerging adults with Down syndrome, sharing that in some ways they were adults and in others they were not. The meaning of adulthood was closely tied to obtained skills, particularly those related to personal safety.


Assuntos
Síndrome de Down , Pais , Pesquisa Qualitativa , Humanos , Síndrome de Down/psicologia , Masculino , Feminino , Adulto , Pais/psicologia , Adulto Jovem , Pessoa de Meia-Idade , Adolescente
3.
Front Immunol ; 15: 1375486, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39007142

RESUMO

Introduction: It is unknown how intestinal B cell populations and B cell receptor (BCR) repertoires are established and maintained over time in humans. Following intestinal transplantation (ITx), surveillance ileal mucosal biopsies provide a unique opportunity to map the dynamic establishment of recipient gut lymphocyte populations in immunosuppressed conditions. Methods: Using polychromatic flow cytometry that includes HLA allele group-specific antibodies distinguishing donor from recipient cells along with high throughput BCR sequencing, we tracked the establishment of recipient B cell populations and BCR repertoire in the allograft mucosa of ITx recipients. Results: We confirm the early presence of naïve donor B cells in the circulation (donor age range: 1-14 years, median: 3 years) and, for the first time, document the establishment of recipient B cell populations, including B resident memory cells, in the intestinal allograft mucosa (recipient age range at the time of transplant: 1-44 years, median: 3 years). Recipient B cell repopulation of the allograft was most rapid in infant (<1 year old)-derived allografts and, unlike T cell repopulation, did not correlate with rejection rates. While recipient memory B cell populations were increased in graft mucosa compared to circulation, naïve recipient B cells remained detectable in the graft mucosa for years. Comparisons of peripheral and intra-mucosal B cell repertoires in the absence of rejection (recipient age range at the time of transplant: 1-9 years, median: 2 years) revealed increased BCR mutation rates and clonal expansion in graft mucosa compared to circulating B cells, but these parameters did not increase markedly after the first year post-transplant. Furthermore, clonal mixing between the allograft mucosa and the circulation was significantly greater in ITx recipients, even years after transplantation, than in deceased adult donors. In available pan-scope biopsies from pediatric recipients, we observed higher percentages of naïve recipient B cells in colon allograft compared to small bowel allograft and increased BCR overlap between native colon vs colon allograft compared to that between native colon vs ileum allograft in most cases, suggesting differential clonal distribution in large intestine vs small intestine. Discussion: Collectively, our data demonstrate intestinal mucosal B cell repertoire establishment from a circulating pool, a process that continues for years without evidence of stabilization of the mucosal B cell repertoire in pediatric ITx patients.


Assuntos
Mucosa Intestinal , Receptores de Antígenos de Linfócitos B , Humanos , Criança , Pré-Escolar , Adolescente , Lactente , Mucosa Intestinal/imunologia , Masculino , Feminino , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Adulto , Linfócitos B/imunologia , Adulto Jovem , Intestinos/imunologia , Intestinos/transplante , Transplante de Órgãos , Rejeição de Enxerto/imunologia
4.
EMBO J ; 43(8): 1388-1419, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514807

RESUMO

Neocortex expansion during evolution is linked to higher numbers of neurons, which are thought to result from increased proliferative capacity and neurogenic potential of basal progenitor cells during development. Here, we show that EREG, encoding the growth factor EPIREGULIN, is expressed in the human developing neocortex and in gorilla cerebral organoids, but not in the mouse neocortex. Addition of EPIREGULIN to the mouse neocortex increases proliferation of basal progenitor cells, whereas EREG ablation in human cortical organoids reduces proliferation in the subventricular zone. Treatment of cortical organoids with EPIREGULIN promotes a further increase in proliferation of gorilla but not of human basal progenitor cells. EPIREGULIN competes with the epidermal growth factor (EGF) to promote proliferation, and inhibition of the EGF receptor abrogates the EPIREGULIN-mediated increase in basal progenitor cells. Finally, we identify putative cis-regulatory elements that may contribute to the observed inter-species differences in EREG expression. Our findings suggest that species-specific regulation of EPIREGULIN expression may contribute to the increased neocortex size of primates by providing a tunable pro-proliferative signal to basal progenitor cells in the subventricular zone.


Assuntos
Epirregulina , Neocórtex , Animais , Humanos , Camundongos , Proliferação de Células , Epirregulina/genética , Epirregulina/metabolismo , Gorilla gorilla/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neocórtex/citologia , Neocórtex/metabolismo , Primatas/fisiologia
5.
EBioMedicine ; 101: 105028, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422982

RESUMO

BACKGROUND: Understanding formation of the human tissue resident memory T cell (TRM) repertoire requires longitudinal access to human non-lymphoid tissues. METHODS: By applying flow cytometry and next generation sequencing to serial blood, lymphoid tissue, and gut samples from 16 intestinal transplantation (ITx) patients, we assessed the origin, distribution, and specificity of human TRMs at phenotypic and clonal levels. FINDINGS: Donor age ≥1 year and blood T cell macrochimerism (peak level ≥4%) were associated with delayed establishment of stable recipient TRM repertoires in the transplanted ileum. T cell receptor (TCR) overlap between paired gut and blood repertoires from ITx patients was significantly greater than that in healthy controls, demonstrating increased gut-blood crosstalk after ITx. Crosstalk with the circulating pool remained high for years of follow-up. TCR sequences identifiable in pre-Tx recipient gut but not those in lymphoid tissues alone were more likely to populate post-Tx ileal allografts. Clones detected in both pre-Tx gut and lymphoid tissue had distinct transcriptional profiles from those identifiable in only one tissue. Recipient T cells were distributed widely throughout the gut, including allograft and native colon, which had substantial repertoire overlap. Both alloreactive and microbe-reactive recipient T cells persisted in transplanted ileum, contributing to the TRM repertoire. INTERPRETATION: Our studies reveal human intestinal TRM repertoire establishment from the circulation, preferentially involving lymphoid tissue counterparts of recipient intestinal T cell clones, including TRMs. We have described the temporal and spatial dynamics of this active crosstalk between the circulating pool and the intestinal TRM pool. FUNDING: This study was funded by the National Institute of Allergy and Infectious Diseases (NIAID) P01 grant AI106697.


Assuntos
Células T de Memória , Receptores de Antígenos de Linfócitos T , Humanos , Íleo , Aloenxertos , Memória Imunológica , Linfócitos T CD8-Positivos
6.
Development ; 150(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38078654
7.
medRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014202

RESUMO

It is unknown how intestinal B cell populations and B cell receptor (BCR) repertoires are established and maintained over time in humans. Following intestinal transplantation (ITx), surveillance ileal mucosal biopsies provide a unique opportunity to map the dynamic establishment of gut lymphocyte populations. Using polychromatic flow cytometry that includes HLA allele group-specific mAbs distinguishing donor from recipient cells along with high throughput BCR sequencing, we tracked the establishment of recipient B cell populations and BCR repertoire in the allograft mucosa of ITx recipients. We confirm the early presence of naïve donor B cells in the circulation and, for the first time, document the establishment of recipient B cell populations, including B resident memory cells, in the intestinal allograft mucosa. Recipient B cell repopulation of the allograft was most rapid in infant (<1 year old)-derived allografts and, unlike T cell repopulation, did not correlate with rejection rates. While recipient memory B cell populations were increased in graft mucosa compared to circulation, naïve recipient B cells remained detectable in the graft mucosa for years. Comparisons of peripheral and intra-mucosal B cell repertoires in the absence of rejection revealed increased BCR mutation rates and clonal expansion in graft mucosa compared to circulating B cells, but these parameters did not increase markedly after the first year post-transplant. Furthermore, clonal mixing between the allograft mucosa and the circulation was significantly greater in ITx recipients, even years after transplantation, than in healthy control adults. Collectively, our data demonstrate intestinal mucosal B cell repertoire establishment from a circulating pool, a process that continues for years without evidence of establishment of a stable mucosal B cell repertoire.

8.
Acta Neuropathol ; 146(5): 663-683, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37656188

RESUMO

Microglia are the brain's resident macrophages, which guide various developmental processes crucial for brain maturation, activity, and plasticity. Microglial progenitors enter the telencephalic wall by the 4th postconceptional week and colonise the fetal brain in a manner that spatiotemporally tracks key neurodevelopmental processes in humans. However, much of what we know about how microglia shape neurodevelopment comes from rodent studies. Multiple differences exist between human and rodent microglia warranting further focus on the human condition, particularly as microglia are emerging as critically involved in the pathological signature of various cognitive and neurodevelopmental disorders. In this article, we review the evidence supporting microglial involvement in basic neurodevelopmental processes by focusing on the human species. We next concur on the neuropathological evidence demonstrating whether and how microglia contribute to the aetiology of two neurodevelopmental disorders: autism spectrum conditions and schizophrenia. Next, we highlight how recent technologies have revolutionised our understanding of microglial biology with a focus on how these tools can help us elucidate at unprecedented resolution the links between microglia and neurodevelopmental disorders. We conclude by reviewing which current treatment approaches have shown most promise towards targeting microglia in neurodevelopmental disorders and suggest novel avenues for future consideration.


Assuntos
Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Humanos , Microglia/patologia , Transtornos do Neurodesenvolvimento/patologia , Macrófagos/patologia , Neuropatologia , Encéfalo/patologia
9.
J Med Chem ; 66(8): 5774-5801, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37027002

RESUMO

HAT1 is a central regulator of chromatin synthesis that acetylates nascent histone H4. To ascertain whether targeting HAT1 is a viable anticancer treatment strategy, we sought to identify small-molecule inhibitors of HAT1 by developing a high-throughput HAT1 acetyl-click assay. Screening of small-molecule libraries led to the discovery of multiple riboflavin analogs that inhibited HAT1 enzymatic activity. Compounds were refined by synthesis and testing of over 70 analogs, which yielded structure-activity relationships. The isoalloxazine core was required for enzymatic inhibition, whereas modifications of the ribityl side chain improved enzymatic potency and cellular growth suppression. One compound (JG-2016 [24a]) showed relative specificity toward HAT1 compared to other acetyltransferases, suppressed the growth of human cancer cell lines, impaired enzymatic activity in cellulo, and interfered with tumor growth. This is the first report of a small-molecule inhibitor of the HAT1 enzyme complex and represents a step toward targeting this pathway for cancer therapy.


Assuntos
Histonas , Neoplasias , Humanos , Histonas/metabolismo , Histona Acetiltransferases/metabolismo , Cromatina , Linhagem Celular , Acetilação
11.
STAR Protoc ; 4(2): 102192, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964907

RESUMO

Understanding immune cell dynamics after intestinal transplantation has provided new insights into human lymphocyte biology. However, isolating and characterizing such cells can be challenging. Here, we provide a protocol to isolate intraepithelial and lamina propria lymphocytes from human ileal biopsies. We describe techniques for flow cytometric analysis and determination of multilineage chimerism and T lymphocyte phenotypes. This protocol can be modified to isolate and analyze lymphocytes from other tissues. For complete details on the use and execution of this protocol, please refer to Fu et al. (2019)1 and Fu et al. (2021).2.

12.
Brain ; 146(3): 1175-1185, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36642091

RESUMO

Maternal viral infection and immune response are known to increase the risk of altered development of the foetal brain. Given the ongoing global pandemic of coronavirus disease 2019 (COVID-19), investigating the impact of SARS-CoV-2 on foetal brain health is of critical importance. Here, we report the presence of SARS-CoV-2 in first and second trimester foetal brain tissue in association with cortical haemorrhages. SARS-CoV-2 spike protein was sparsely detected within progenitors and neurons of the cortex itself, but was abundant in the choroid plexus of haemorrhagic samples. SARS-CoV-2 was also sparsely detected in placenta, amnion and umbilical cord tissues. Cortical haemorrhages were linked to a reduction in blood vessel integrity and an increase in immune cell infiltration into the foetal brain. Our findings indicate that SARS-CoV-2 infection may affect the foetal brain during early gestation and highlight the need for further study of its impact on subsequent neurological development.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Gravidez , Feminino , Humanos , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus , Hemorragia
13.
14.
J Anim Sci ; 100(3)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35148394

RESUMO

In vitro produced (IVP) embryos hold great promise in the cattle industry; however, suboptimal in vitro culture conditions induce metabolic dysfunction, resulting in poor development and low cryotolerance of IVP embryos. This limits the use of IVP embryos in the cattle industry for embryo transfer and commercial scale-up. Previous studies have reported the use of individual metabolic regulators in culture media to improve blastocyst development rates and cryopreservation. In this study, we hypothesized that using a combination of select regulators, chosen for their unique synergistic potential, would alleviate metabolic dysfunction and improve the development of in vitro produced embryos to make them more closely resemble in vivo derived embryos. To test this, we first compared lipid content between Holstein and Jersey embryos produced in vivo and in vitro, and then systematically determined the combination of metabolic regulators that led to the greatest improvements in embryonic development, lipid content, mitochondrial polarity, and cryotolerance. We also tested different slow freezing techniques to further improve cryotolerance and finally validated our results via a clinical trial. Overall, we found that the use of multiple metabolic regulators in one culture media, which we refer to as Synthetic oviductal fluid for Conventional Freezing 1 (SCF1), and an optimized slow freezing technique resulted in improved pregnancy rates for frozen IVP embryos compared to embryos cultured in a synthetic oviductal fluid media. Additionally, there was no difference in pregnancy rate between frozen and fresh IVP embryos cultured in SCF1. This suggests that optimizing culture conditions and slow freezing technique can produce cryotolerance IVP and should allow further dissemination of this assisted reproductive technology.


In vitro produced (IVP) bovine embryos suffer from several physiological abnormalities that interfere with their ability to withstand the freezing process, a vital step in shipping and distribution of IVP embryos. To overcome these challenges, we performed a series of experiments to determine the optimal culture medium to best support the developing embryo. This new in vitro embryo culture medium is referred to as Synthetic oviductal fluid for Conventional Freezing 1 (SCF1). The medium is supplemented with various factors to more closely mimic the uterine environment, improve mitochondrial function, and decrease lipid accumulation. The results show that IVP embryos cultured in SCF1, slow frozen using an optimized technique, and transferred into recipients have a pregnancy rate that is similar to non-frozen IVP embryos. These findings suggest that SCF1 improves developmental competence of bovine IVP embryos and their ability to withstand cryopreservation, which can improve pregnancy rates and efficiency of assisted fertility operations within the dairy cattle industry.


Assuntos
Criopreservação , Transferência Embrionária , Animais , Blastocisto , Bovinos , Criopreservação/métodos , Criopreservação/veterinária , Meios de Cultura/farmacologia , Técnicas de Cultura Embrionária/veterinária , Transferência Embrionária/veterinária , Feminino , Fertilização in vitro/veterinária , Congelamento , Gravidez , Taxa de Gravidez
15.
Semin Cell Dev Biol ; 130: 24-36, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34583893

RESUMO

How our brains have developed to perform the many complex functions that make us human has long remained a question of great interest. Over the last few decades, many scientists from a wide range of fields have tried to answer this question by aiming to uncover the mechanisms that regulate the development of the human neocortex. They have approached this on different scales, focusing microscopically on individual cells all the way up to macroscopically imaging entire brains within living patients. In this review we will summarise these key findings and how they fit together.


Assuntos
Neocórtex , Humanos
16.
Int J Sports Phys Ther ; 16(2): 404-417, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33842036

RESUMO

BACKGROUND: Professional ballet dancers suffer high injury rates and are less likely than other athletes to specifically train to improve muscular strength, coordination, agility, speed and motor control because of heavy training demands, aesthetic appearances and financial barriers. HYPOTHESIS/PURPOSE: The purpose of this study was to examine the effects of a supplemental conditioning program on professional and pre-professional contemporary ballet dancers. The authors hypothesized that those participating in a training program would reduce injury rate by improving their motor control, stability, balance and physical function. The authors aimed to observe the feasibility and qualitative phenomena related to a conditioning program from the dancer's perspective. STUDY DESIGN: A mixed-methods study; within subject quasi-experimental design and qualitative interviews. METHODS: Six professional classical and contemporary ballet dancers completed the five-week conditioning and injury prevention training program. Non-parametric analysis of baseline, posttest and four-month follow-up physical performance measures, subjective outcomes, and qualitative follow-up interviews, were reported. RESULTS: Significant post-test improvements included: The Dance Functional Outcome Survey (Z= -2.2, p= 0.04), composite Modified Star Excursion Balance Test (Z= -2.2, p= 0.03 bilaterally), Single Leg Hop for Distance (Z= -2.02, p= 0.04), and Upper Extremity Closed Kinetic Chain Test (Z=-2.03, p= 0.04). Significant changes from baseline to the four-month follow up remained for: (1) Dance Functional Outcome Survey (Z= -2.2, p= 0.03), (2) Single Leg Hop for Distance (Z= -2.2, p= 0.03), and (3) Modified Star Excursion Balance Test composite maximum reach for the left lower extremity (Z= -2.2, p= 0.03). CONCLUSION: Completing a conditioning and prevention program for professional ballet dancers was related to improved function, balance, hop distance/stability and upper extremity stability. Dancers found the program beneficial, identified barriers to participation, and elucidated factors making the program feasible and successful. More research is necessary to determine the effect of such programs on injury incidence. LEVEL OF EVIDENCE: 3b.

17.
Neurobiol Dis ; 153: 105316, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33711492

RESUMO

The neurodevelopmental phenotype in Down Syndrome (DS), or Trisomy 21, is variable including a wide spectrum of cognitive impairment and a high risk of early-onset Alzheimer's disease (AD). A key metabolite of interest within the brain in DS is Myo-inositol (mIns). The NA+/mIns co-transporter is located on human chromosome 21 and is overexpressed in DS. In adults with DS, elevated brain mIns was previously associated with cognitive impairment and proposed as a risk marker for progression to AD. However, it is unknown if brain mIns is increased earlier in development. The aim of this study was to estimate mIns concentration levels and key brain metabolites [N-acetylaspartate (NAA), Choline (Cho) and Creatine (Cr)] in the developing brain in DS and aged-matched controls. We used in vivo magnetic resonance spectroscopy (MRS) in neonates with DS (n = 12) and age-matched controls (n = 26) scanned just after birth (36-45 weeks postmenstrual age). Moreover, we used Mass Spectrometry in early (10-20 weeks post conception) ex vivo fetal brain tissue samples from DS (n = 14) and control (n = 30) cases. Relative to [Cho] and [Cr], we report elevated ratios of [mIns] in vivo in the basal ganglia/thalamus, in neonates with DS, when compared to age-matched typically developing controls. Glycine concentration ratios [Gly]/[Cr] and [Cho]/[Cr] also appear elevated. We observed elevated [mIns] in the ex vivo fetal cortical brain tissue in DS compared with controls. In conclusion, a higher level of brain mIns was evident as early as 10 weeks post conception and was measurable in vivo from 36 weeks post-menstrual age. Future work will determine if this early difference in metabolites is linked to cognitive outcomes in childhood or has utility as a potential treatment biomarker for early intervention.


Assuntos
Encéfalo/metabolismo , Síndrome de Down/metabolismo , Feto/metabolismo , Inositol/metabolismo , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Colina/metabolismo , Creatina/metabolismo , Feminino , Feto/embriologia , Glicina/metabolismo , Humanos , Recém-Nascido , Espectroscopia de Ressonância Magnética , Masculino
18.
Biomaterials ; 271: 120712, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33618220

RESUMO

The human brain has unique features that are difficult to study in animal models, including the mechanisms underlying neurodevelopmental and psychiatric disorders. Despite recent advances in human primary brain tissue culture systems, the use of these models to elucidate cellular disease mechanisms remains limited. A major reason for this is the lack of tools available to precisely manipulate a specific area of the tissue in a reproducible manner. Here we report an easy-to-use tool for site-specific manipulation of human brain tissue in culture. We show that line-shaped cryogel scaffolds synthesized with precise microscale dimensions allow the targeted delivery of a reagent to a specific region of human brain tissue in culture. 3-sulfopropyl acrylate (SPA) was incorporated into the cryogel network to yield a negative surface charge for the reversible binding of molecular cargo. The fluorescent dyes BODIPY and DiI were used as model cargos to show that placement of dye loaded scaffolds onto brain tissue in culture resulted in controlled delivery without a burst release, and labelling of specific regions without tissue damage. We further show that cryogels can deliver tetrodotoxin to tissue, inhibiting neuronal function in a reversible manner. The robust nature and precise dimensions of the cryogel resulted in a user-friendly and reproducible tool to manipulate primary human tissue cultures. These easy-to-use cryogels offer an innovate approach for more complex manipulations of ex-vivo tissue.


Assuntos
Criogéis , Engenharia Tecidual , Animais , Encéfalo , Humanos , Modelos Animais , Alicerces Teciduais
19.
Front Cell Neurosci ; 15: 804649, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35140590

RESUMO

Extracellular matrix (ECM) has long been known to regulate many aspects of neural development in many different species. However, the role of the ECM in the development of the human neocortex is not yet fully understood. In this review we discuss the role of the ECM in human neocortex development and the different model systems that can be used to investigate this. In particular, we will focus on how the ECM regulates human neural stem and progenitor cell proliferation and differentiation, how the ECM regulates the architecture of the developing human neocortex and the effect of mutations in ECM and ECM-associated genes in neurodevelopmental disorders.

20.
Acta Biomater ; 121: 250-262, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33242639

RESUMO

Protection or repair of the nigrostriatal pathway represents a principal disease-modifying therapeutic strategy for Parkinson's disease (PD). Glial cell line-derived neurotrophic factor (GDNF) holds great therapeutic potential for PD, but its efficacious delivery remains difficult. The aim of this study was to evaluate the potential of different biomaterials (hydrogels, microspheres, cryogels and microcontact printed surfaces) for reconstructing the nigrostriatal pathway in organotypic co-culture of ventral mesencephalon and dorsal striatum. The biomaterials (either alone or loaded with GDNF) were locally applied onto the brain co-slices and fiber growth between the co-slices was evaluated after three weeks in culture based on staining for tyrosine hydroxylase (TH). Collagen hydrogels loaded with GDNF slightly promoted the TH+ nerve fiber growth towards the dorsal striatum, while GDNF loaded microspheres embedded within the hydrogels did not provide an improvement. Cryogels alone or loaded with GDNF also enhanced TH+ fiber growth. Lines of GDNF immobilized onto the membrane inserts via microcontact printing also significantly improved TH+ fiber growth. In conclusion, this study shows that various biomaterials and tissue engineering techniques can be employed to regenerate the nigrostriatal pathway in organotypic brain slices. This comparison of techniques highlights the relative merits of different technologies that researchers can use/develop for neuronal regeneration strategies.


Assuntos
Materiais Biocompatíveis , Substância Negra , Animais , Técnicas de Cocultura , Corpo Estriado/metabolismo , Dopamina , Mesencéfalo/metabolismo , Camundongos Endogâmicos C57BL , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA