Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 60(24): 18739-18752, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34865470

RESUMO

In this work, we employed an asymmetric auxiliary organic ligand (1,1,1-trifluoroacetylacetone, Htfac) to further regulate the magnetic relaxation behavior of series of Dy2 single-molecule magnets (SMMs) with a N1,N3-bis(3-methoxysalicylidene)diethylenetriamine (H2L) ligand. Fortunately, an air-stable Dy2 complex, [Dy2(L)2(tfac)2] (1; Htfac = 1,1,1-trifluoroacetylacetone) was obtained at room temperature. A structural analysis indicated that some Dy-O or Dy-N bond lengths for 1 are not in the range of those for the complexes [DyIII2(L)2(acac)2]·2CH2Cl2 (Dy2-acac; Hacac = acetylacetone) and [DyIII2(L)2(hfac)2] (Dy2-hfac; Hhfac = hexafluoroacetylacetone), although the electron-withdrawing ability of tfac- is stronger than that of acac- but weaker than that of hfac-. Additionally, the Dy-O3/O3a (the two O atoms bridged to DyIII ions) bond lengths are also affected by the asymmetrical Htfc ligand. This indicated that the charge distribution of the coordination atoms around DyIII has been modified in 1, which leads to the fine-tuning of the magnetic relaxation behavior of 1. Magnetic studies indicated that the values of effective energy barrier (Ueff) for 1 and its diluted sample (2) are 234.8(3) and 188.0(6) K, respectively, which are both higher than the reported value of 110 K for the complex Dy2-hfac. More interestingly, 1 exhibits a magnetic hysteresis opening when T < 2.5 K at zero field, while the hysteresis loops of 2 are closed at a zero dc field. This discrepancy is due to the weak intramolecular exchange coupling in 2, which cannot overcome the QTM of the single DyIII ion. Ab initio calculations for 1 revealed that the charge distributions of the coordination atoms around DyIII ions were regulated and the intramolecular exchange coupling was indeed improved when the asymmetrical Htfc was employed as a ligand for the synthesis of this kind of Dy2 SMM.

2.
Dalton Trans ; 48(35): 13472-13482, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31454007

RESUMO

Four chair-like hexanuclear Fe-Ln complexes containing mixed organic ligands, namely, [Fe4Ln2{(py)2CO2}4(pdm)2(NO3)2(H2O)2Cl4]·xCH3CN·yH2O (Ln = GdIII (1, x = 1, y = 0), DyIII (2, x = 1, y = 1), HoIII (3, x = 0, y = 2), and ErIII (4, x = 1, y = 3); (py)2CO2H2 = the gem-diol form of di-2-pyridyl ketone and pdmH2 = 2,6-pyridinedimethanol) have been obtained by employing di-2-pyridyl ketone and 2,6-pyridinedimethanol reacting with FeCl3 and Ln(NO3)3 in MeCN. The structures of 1-4 are similar to each other except for the number of lattice solvent molecules. Four FeIII and two LnIII in these complexes comprise a chair-like core with the "body" constructed by four FeIII ions and the "end" constructed by two LnIII ions. Among the four compounds, 2 shows field-induced single molecule magnet behavior as revealed by ac magnetic susceptibility studies, with the effective energy barrier and the pre-exponential factor of 22.07 K and 8.44 × 10-7 s, respectively. Ab initio calculations indicated that, among 2_Dy, 3_Ho and 4_Er fragments, the energy gap between the lowest two spin-orbit states for 2_Dy is the largest, while the tunneling gap for 2 is the smallest. These might be the reasons for complex 2 exhibiting SMM behavior. Additionally, the orientations of the magnetic anisotropy of DyIII in 2 were obtained by electrostatic calculations and ab initio calculations, both indicating that the directions of the main magnetic axis of Dy1 ions are almost aligned along Dy1-O5 (O5 from the pdm2- ligand).

3.
Dalton Trans ; 48(2): 512-522, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30520910

RESUMO

In this work, we report the syntheses, crystal structures and magnetic properties of three novel Zn-Ln mixed metal complexes, namely [Zn4Dy2(L1)2(L2)2(N3)2]Cl2·2H2O (1), [Zn4Tb2(L1)2(L2)2(Cl)2][ZnN3Cl3]·2H2O (2), and [Zn4Gd2(L1)2(L2)2(Cl)2][ZnN3Cl3]·2H2O (3), in which L12- and L23- were formed from the ligand L [L = N1,N3-bis(3-methoxysalicylidene)diethylenetriamine] through in situ reactions. Interestingly, carbon dioxide in air was absorbed in the process of forming carbamate ligand L23-; this can be ascribed to the insertion of CO2 into M-N amide bonds. Moreover, 1 and 2 represent the first series of 3d-4f SMMs containing carbamate ligands by fixation of CO2 in air. Single-crystal X-ray diffraction analyses reveal that the crystal structures of 1 and 2 are anion-dependent, i.e., the apical positions of the two ZnII ions in 1 and 2 are occupied by an N atom of N3- and by Cl-, respectively. However, the topologies of 2 and 3 are similar. Two ZnII ions and one LnIII (Ln = Dy (1), Tb (2) and Gd (3)) form nearly linear trinuclear [Zn2Ln] units which are double-bridged by two L23- ligands. Magnetic studies reveal that two complexes show single molecule magnet behavior under a direct current (dc) field, with effective energy barriers (Ueff) of 30.66(5) K for 1 and 8.87(3) K for 2. Ab initio calculations reveal that the DyIII ions in 1 and the TbIII ions in 2 are axial in nature; however, a difference in the tunnel splitting of 1 and 2 leads to variation in the magnetization blockades of the two complexes. Theoretical calculations also indicate that the directions of the main magnetic axes severely deviate from the coordination atoms of the first spheres of DyIII and TbIII in 1 and 2; thus further results in poor SMM behavior of the two complexes.

4.
Dalton Trans ; 45(45): 18221-18228, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27796399

RESUMO

We report the syntheses, crystal structures, and magnetic properties of two 3d-4f heterometallic compounds; namely, [Mn8Ln2O2(OH)2{(py)2CO2}4(teaH)4(CH3COO)6]·6CH3CN·2H2O (LnIII = Dy (1), Tb (2); (py)2CO2H2 = the gem-diol form of di-2-pyridyl ketone, teaH3 = triethanolamine). Both compounds were prepared by the reaction of Mn(OAc)2·4H2O, Ln(NO3)3·5H2O (Ln = Dy and Tb) with the ligands di-2-pyridyl ketone and triethanolamine in MeCN, and they crystallize in the monoclinic space group C2/c. [Mn8Ln2] complexes have not been reported before, and the metallic cores of both complexes were unprecedented. In these cores, two Dy or Tb and two Mn ions comprised a well-known butterfly topology, with three of the remaining six Mn atoms each being situated on either side of the butterfly, linked through two µ3-O2- ions. Six MnIII and two MnII were in six-coordinated distorted octahedrons and two LnIII ions were in nine-coordinated distorted muffins. Interestingly, the coordination sites of LnIII ions are occupied by six O and two N atoms from two teaH2- ligands and one µ3-O2- atom, without the presence of coordinated solvent molecules such as H2O and small anions such as NO3- ions, which is rare in 3d-4f complexes. Remarkably, alternating current (ac) magnetic susceptibility measurements revealed that both complexes displayed dynamic anisotropic magnetic behaviour. The effective energy barrier (Ueff) of complex 2 was estimated to be 18.97 K through high frequency (111-9111 Hz) ac susceptibility measurements. The low symmetry of the coordination configuration of Ln3+ in 1 and 2 may be responsible for the small energy barriers of these two compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...