Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 6(17): 15162-70, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25144932

RESUMO

In this study, the pristine graphene nanosheets (GNS) derived from chemical vapor deposition process were employed as catalyst support. In spite of the extremely hydrophobic GNS surface, ultrafine Pt nanoparticles (NPs) were successfully assembled on the GNS through a surfactant-free solution process. The evolution of Pt NPs in the GNS support was studied using transmission electron microscopy. It was found that the high-energy surface sites in the GNS, such as edges and defects, played a critical role on anchoring and stabilizing Pt nuclei, leading to the formation of Pt NPs on the GNS support. The concentration of the Pt precursor, i.e., H2PtCl6 solution had significant effects on the morphology of Pt/GNS hybrids. The resulting Pt/GNS hybrids were examined as catalysts for methanol electro-oxidation. It was indicated that the electrochemical active surface area and catalytic activity of the Pt/GNS hybrids were highly dependent on Pt loadings. The superior activity of the catalysts with low Pt loadings was attributed to the presence of Pt subnanoclusters as well as the strong chemical interaction of Pt NPs with the GNS support.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA