Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38674950

RESUMO

Shape-shifting polymers usually require not only reversible stimuli-responsive ability, but also strong mechanical properties. A novel shape-shifting photochromic hydrogel system was designed and fabricated by embedding hydrophobic spiropyran (SP) into double polymeric network (DN) through micellar copolymerisation. Here, sodium alginate (Alg) and poly acrylate-co-methyl acrylate-co-spiropyran (P(SA-co-MA-co-SPMA)) were employed as the first network and the second network, respectively, to realise high mechanical strength. After being soaked in the CaCl2 solution, the carboxyl groups in the system underwent metal complexation with Ca2+ to enhance the hydrogel. Moreover, after the hydrogel was exposed to UV-light, the closed isomer of spiropyran in the hydrogel network could be converted into an open zwitterionic isomer merocyanine (MC), which was considered to interact with Ca2+ ions. Interestingly, Ca2+ and UV-light responsive programmable shape of the copolymer hydrogel could recover to its original form via immersion in pure water. Given its excellent metal ion and UV light stimuli-responsive and mechanical properties, the hydrogel has potential applications in the field of soft actuators.

2.
Polymers (Basel) ; 16(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675070

RESUMO

Shape-shifting polymers are widely used in various fields such as intelligent switches, soft robots and sensors, which require both multiple stimulus-response functions and qualified mechanical strength. In this study, a novel near-infrared-light (NIR)-responsible shape-shifting hydrogel system was designed and fabricated through embedding vinylsilane-modified carbon nanotubes (CNTs) into particle double-network (P-DN) hydrogels by micellar copolymerisation. The dispersed brittle Poly(sodium 2-acrylamido-2-methylpropane-1-sulfonate) (PNaAMPS) network of the microgels can serve as sacrificial bonds to toughen the hydrogels, and the CNTs endow it with NIR photothermal conversion ability. The results show that the CNTs embedded in the P-DN hydrogels present excellent mechanical strength, i.e., a fracture strength of 312 kPa and a fracture strain of 357%. Moreover, an asymmetric bilayer hydrogel, where the active layer contains CNTs, can achieve 0°-110° bending deformation within 10 min under NIR irradiation and can realise complex deformation movement. This study provides a theoretical and experimental basis for the design and manufacture of photoresponsive soft actuators.

3.
Adv Healthc Mater ; 13(8): e2302973, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38011349

RESUMO

Hydrogels usually are fabricated by using monomers or preexisting polymers in precursor solutions. Here, a polyelectrolyte complex biohydrogel (Bio-PEC hydrogel) made from a precursor dough, by kneading, annealing, and crosslinking the dough of two oppositely charged polysaccharides, cationic chitosan quaternary ammonium salt (HACC) and anionic sodium hyaluronate (HA), photoinitiator (α-ketoglutaric acid), crosslinker glycidyl methacrylate (GMA), and water of very small quantity is reported. Controlled kneading and annealing homogenized the dough with respect to transforming randomly distributed, individual polymer chains into tightly wound double-stranded structures, which, upon UV irradiation, covalently sparsely crosslinked into a highly entangled network and subsequently, upon fully swollen in water, results in Bio-PEC hydrogel, HACC/HA, exhibiting near-perfect elasticity, high tensile strength, and high swelling resistance. Via the same kneading and annealing, tetracarboxyphenylporphyrin iron (Fe-TCPP) metal nanoclusters are incorporated into HACC/HA to obtain photocatalytic, antibacterial, and biocompatible Bio-PEC hydrogel composite, Fe-TCPP@HACC/HA. Using SD rat models, the efficacy of Fe-TCPP@HACC/HA in inhibiting Escherichia coli (E. coli) growth in vitro and the ability to promote wound healing and scar-free skin regeneration in vivo, or its high potential as a wound dressing material for biomedical applications are demonstrated.


Assuntos
Quitosana , Hidrogéis , Metaloporfirinas , Ratos , Animais , Hidrogéis/química , Materiais Biocompatíveis/química , Polieletrólitos/química , Escherichia coli , Ratos Sprague-Dawley , Quitosana/química , Antibacterianos/química , Polímeros , Água
4.
Polymers (Basel) ; 15(12)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37376290

RESUMO

Polyampholyte (PA) hydrogels are randomly copolymerized from anionic and cationic monomers, showing good mechanical properties owing to the existence of numerous ionic bonds in the networks. However, relatively tough PA gels can be synthesized successfully only at high monomer concentrations (CM), where relatively strong chain entanglements exist to stabilize the primary supramolecular networks. This study aims to toughen weak PA gels with relatively weak primary topological entanglements (at relatively low CM) via a secondary equilibrium approach. According to this approach, an as-prepared PA gel is first dialyzed in a FeCl3 solution to reach a swelling equilibrium and then dialyzed in sufficient deionized water to remove excess free ions to achieve a new equilibrium, resulting in the modified PA gels. It is proved that the modified PA gels are eventually constructed by both ionic and metal coordination bonds, which could synergistically enhance the chain interactions and enable the network toughening. Systematic studies indicate that both CM and FeCl3 concentration (CFeCl3) influence the enhancement effectiveness of the modified PA gels, although all the gels could be dramatically enhanced. The mechanical properties of the modified PA gel could be optimized at CM = 2.0 M and CFeCl3 = 0.3 M, where the Young's modulus, tensile fracture strength, and work of tension are improved by 1800%, 600%, and 820%, respectively, comparing to these of the original PA gel. By selecting a different PA gel system and diverse metal ions (i.e., Al3+, Mg2+, Ca2+), we further prove that the proposed approach is generally appliable. A theoretical model is used to understand the toughening mechanism. This work well extends the simple yet general approach for the toughening of weak PA gels with relatively weak chain entanglements.

5.
Polymers (Basel) ; 15(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36772087

RESUMO

Stimuli-responsive hydrogel actuators have attracted tremendous interest in switches and microrobots. Based on N-isopropylacrylamide (NIPAM) monomers with LCST phase separation and photochromic molecule spiropyran which can respond to ultraviolet light and H+, we develop a novel multistimuli-responsive co-polymer anisotropic bilayer hydrogel, which can undergo complex deformation behavior under environmental stimuli. Diverse bending angles were achieved based on inhomogeneous swelling. By controlling the environmental temperature, the bilayer hydrogels achieved bending angles of 83.4° and -162.4° below and above the critical temperature of PNIPAM. Stimulated by ultraviolet light and H+, the bilayer hydrogels showed bending angles of -19.4° and -17.3°, respectively. In addition, we designed a strategy to enhance the mechanical properties of the hydrogel via double network (DN). The mechanical properties and microscopic Fourier transform infrared (micro-FTIR) spectrum showed that the bilayer hydrogel can be well bonded at the interfaces of such bilayers. This work will inspire the design and fabrication of novel soft actuators with synergistic functions.

6.
Macromol Rapid Commun ; 43(21): e2200464, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35792664

RESUMO

The poor adhesion performance of typical gels still remains a challenge to find a simple method to achieve strong and reversible adhesion with the existence of water. Here, a poly(acryloyloxyethyl trimethyl ammonium chloride-co-2-vinyl-4-6-diamino-1,3,5-triazine) (P(DAC-co-VDT)) gel with high and adjustable interfacial adhesion is fabricated by combining cation-triazine π interaction and multiple hydrogen bonding and through a one-pot route. Characterization of the gels reveals that the two types of interactions are introduced into the gel network and that the gel-gel and gel-glass interfacial adhesion can be readily adjusted in a wide range from 15.98 to 123.60 kPa. This approach enables the creation of high-strength composites using P(DAC-co-VDT) gel as matrix, anionic monomer sodium p-styrene sulfonate as ion concentration adjustor, and discrete quartz sands as filler with easy and repeated moldability and self-healing capability.


Assuntos
Triazinas , Ligação de Hidrogênio , Polieletrólitos , Géis/química , Cátions
7.
Polymers (Basel) ; 14(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35567046

RESUMO

The structure, morphology, fracture toughness and flaw sensitivity length scale of chain-extended poly(butylene succinate) with various pre-stretch ratios were studied. PBS modification adopted from a multifunctional, commercially available chain-extension containing nine epoxy groups (ADR9) as the first step chain extension and hydroxyl addition modified dioxazoline (BOZ) as the second step. Time-temperature superposition (TTS) studies show that the viscosity increased sharply and the degree of molecular branching increased. Fourier transform infrared spectroscopy (FT-IR) confirm successful chain extension reactions. The orientation of the polymer in the pre-stretch state is such that spherulites deformation along the stretching direction was observed by polarized light optical microscopy (PLOM). The fracture toughness of sample (λfix = 5) is Γ ≈ 106 J m-2 and its critical flaw sensitivity length scale is Γ/Wc ≈ 0.01 m, approximately 5 times higher than PBS without chain-extension (Γ ≈ 2 × 105 J m-2 and Γ/Wc ≈ 0.002 m, respectively). The notch sensitivity of chain-extended PBS is significantly reduced, which is due to the orientation of spherulites more effectively preventing crack propagation. The principle can be generalized to other high toughness material systems.

8.
Macromol Rapid Commun ; 42(7): e2000701, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33491838

RESUMO

Rewritable information record materials usually demand not only reversibly stimuli-responsive ability, but also strong mechanical properties. To achieve one photochromic hydrogel with super-strong mechanical strength, hydrophobic molecule spiropyran (SP) has been introduced into a copolymer based on ion-hybrid crosslink. The hydrogels exhibit both photoinduced reversible color changes and excellent mechanical properties, i.e., the tensile stress of 3.22 MPa, work of tension of 12.8 MJ m-3 , and modulus of elasticity of 8.6 MPa. Moreover, the SP-based Ca2+ crosslinked hydrogels can be enhanced further when exposed to UV-light via ionic interaction coordination between Ca2+ , merocyanine (MC) with polar copolymer chain. In particular, hydrogels have excellent reversible conversion behavior, which can be used to realize repeatable writing of optical information. Thus, the novel design is demonstrated to support future applications in writing repeatable optical information, optical displays, information storage, artificial intelligence systems, and flexible wearable devices.


Assuntos
Inteligência Artificial , Hidrogéis , Elasticidade , Interações Hidrofóbicas e Hidrofílicas , Polímeros
9.
Macromol Rapid Commun ; 41(14): e2000202, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32567192

RESUMO

The research on multiple hydrogen bonds (H-bonds) hydrogels have gradually aroused wide interest. In this paper, a multiple H-bonds-reinforced poly(acrylamide-co-2-vinyl-4,6-diamino-2-vinyl-1,3,5-triazine)/tannic acid (P(Am-co-VDT)/TA) hydrogels are prepared. The results suggest that the prepared hydrogel has two types of H-bonds crosslinking regions: A "soft" region of H-bonds between the diaminotriazine (DAT) moieties on the polymer chains and the TA pyrogallol/catechol groups, and a "hard" region of H-bonds forming by DAT moieties with itself. The hard crosslinking region exhibits significantly higher activation energy than the soft region. Such soft and hard dual physically crosslinked networks dramatically enhance the mechanical properties of P(Am-co-VDT)/TA hydrogels in a synergistic manner (tensile strength is 2.34 MPa, elongation at break is 410%). Due to the multiple hydrogen bonds, the hydrogel has good pH sensitivity and rapid response to shape memory within a few minutes. In addition, the hydrogels have the capacity of physical adsorption of the anti-inflammatory drug diclofenac sodium and other molecules with a specific spatially arranged chemical composition. These hydrogels with high mechanical strength, excellent shape memory behavior, and capacity of adsorption of anti-inflammatory drug could be attractive candidates for applications in the fields of biomedicine, tissue engineering, and medical materials.


Assuntos
Hidrogéis , Polímeros , Adsorção , Anti-Inflamatórios , Ligação de Hidrogênio
10.
Macromol Rapid Commun ; 41(11): e2000127, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32430967

RESUMO

A versatile ionic crosslink lithography (ICL) approach is reported to achieve geometry transitions of strong polyvinyl alcohol/sodium alginate (PVA/SA) hydrogels in a controllable and programmable manner. Specifically, localized PVA/SA and PVA/SA/Fe3+ hydrogel domains of significantly different swellabilities (i.e., in-plane gradient) are created by patterning and selective ionic crosslinking of one single type of PVA/SA hydrogel. A simple two-step sequential pre- and free-swelling, or each alone, directs the patterned, inhomogeneous hydrogel to transform in various programmable and quasi-quantitative ways through local bulging and/or global buckling. All types of shape changing are reversible and repeatable due to the reversible nature of ionic coordination in the hydrogel networks. The flexibility and versatility of 3D printing is also demonstrated in creating through-thickness gradient in PVA and PVA/SA hydrogel assemblies with similar morphing capability. The ICL approach developed in this work may help shed some light on developing strong and shape morphing hydrogels as soft sensors and actuators and for potentially biomimetic transformations. The ICL approach may also be transferable to fabrication of many other types of hydrogel materials for similar applications.


Assuntos
Alginatos/química , Reagentes de Ligações Cruzadas/química , Hidrogéis/química , Álcool de Polivinil/química , Hidrogéis/síntese química , Íons/química , Impressão Tridimensional
11.
Soft Matter ; 15(38): 7686-7694, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31498364

RESUMO

We report a simple and facile self-assembly approach to fabricate polyelectrolyte complex (PEC) hydrogel films with positively charged chitosan (CS) and negatively charged heparin sodium (HS) by combining hydrogen bonding and electrostatic interactions. The CS/HS hydrogel films exhibited excellent tensile strength and toughness, good self-recovery ability, superior water absorbency, and pH-dependent surface charge characteristics. The gelation mechanism was investigated by zeta potential measurements. The CS/HS hydrogel films exhibited high antibacterial efficacy against E. coli at selected pHs or when coordinated with various metal ions and a significant effect on accelerating wound healing. The self-assembly approach presented in this work may serve as a generic strategy for the fabrication of novel multi-functional PEC hydrogels for broad biomedical applications.


Assuntos
Antibacterianos/química , Quitosana/química , Heparina/química , Polieletrólitos/química , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Cátions , Escherichia coli/efeitos dos fármacos , Humanos , Hidrogéis , Concentração de Íons de Hidrogênio , Membranas Artificiais , Metais/química , Pele , Propriedades de Superfície , Resistência à Tração , Água
12.
Polymers (Basel) ; 11(5)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083318

RESUMO

A poly(styrene-ran-methyl acrylate) (S-MA) (75/25 mol/mol), synthesized by surfactant-free emulsion copolymerization, was used as a compatibilizer for polystyrene-b-polybutadiene-b-polystyrene (SBS)-toughened polylactide (PLA) blends. Upon compatibilization, the blends exhibited a refined dispersed-phase morphology, a decreased crystallinity with an increase in their amorphous interphase, improved thermal stability possibly from the thicker, stronger interfaces insusceptible to thermal energy, a convergence of the maximum decomposition-rate temperatures, enhanced magnitude of complex viscosity, dynamic storage and loss moduli, a reduced ramification degree in the high-frequency terminal region of the Han plot, and an increased semicircle radius in the Cole-Cole plot due to the prolonged chain segmental relaxation times from increases in the thickness and chain entanglement degree of the interphase. When increasing the S-MA content from 0 to 3.0 wt %, the tensile properties of the blends improved considerably until 1.0 wt %, above which they then increased insignificantly, whereas the impact strength was maximized at an optimum S-MA content of ~1.0 wt %, hypothetically due to balanced effects of the medium-size SBS particles on the stabilization of preexisting crazes and the initiation of new crazes in the PLA matrix. These observations confirm that S-MA, a random copolymer first synthesized in our laboratory, acted as an effective compatibilizer for the PLA/SBS blends.

13.
Macromol Rapid Commun ; 39(23): e1800400, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30101504

RESUMO

With the deepening of research on high-strength hydrogels, the multi-functional study of hydrogels has become a hot spot. In this paper, a dual cross-linked physical high-strength hydrogels is prepared by a relatively simple method. 2-Vinyl- 4,6-Diamino-2-vinyl-1,3,5-triazine (VDT) induces the formation of the first cross-linking points through the interaction of hydrogen bonds with poly(acrylamide-co-acrylic acid) (PAm-co-Ac) chains, then the secondary physical cross-linkers Fe3+ that introduce ionic coordinates between Fe3+ and -COO- groups. Due to the synergistic effect of hydrogen bonding and ionic coordination, hydrogels possess high tensile strength (approx. 4.34 MPa), large elongation (approx. 17.64 times), and good healing properties under alkali solution after cutting into two pieces. Meanwhile, VDT contains diaminotriazine functional groups that easily form hydrogen bonds so that the polymer of hydrogels could absorb 5-fluorouridine. In addition, the contribution of ionic polymer segments enables pH to be sensitive to hydrogels and facilitates the adsorption of a large number of ionic monomers to form ionic conductive networks, the prepared hydrogel capacitor device has very high sensitivity to pressure and deformation, and can detect the movement behavior of the human body. The dual-physical cross-linked hydrogels had a selective adsorption to biological small molecules and could be assembled into a flexible wearable device with high sensitivity.


Assuntos
Complexos de Coordenação/química , Reagentes de Ligações Cruzadas/síntese química , Compostos Férricos/química , Hidrogéis/química , Reagentes de Ligações Cruzadas/química , Hidrogéis/síntese química , Ligação de Hidrogênio , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
14.
ACS Appl Mater Interfaces ; 10(37): 31198-31207, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30148345

RESUMO

We report a dual ionic cross-linking approach for the preparation of double-network hydrogels with robustness, high strength, and toughness, sodium alginate/poly(acrylamide- co-acrylic acid)/Fe3+ (SA/P(AAm- co-AAc)/Fe3+), in a facile "one-step" dual ionic cross-linking method. We take advantage of the abundant carboxyl groups on alginate molecules and the copolymer chains and their high coordination capacity with multivalent metal ions to obtain hydrogels with high strength and toughness. The optimal SA/P(AAm- co-AAc)/Fe3+ (SA 2 wt % and AAc 5 mol %) hydrogels showed a remarkable mechanical performance with 3.24 MPa tensile strength and 1228% strain, both of which remained stable with 76% water content and were highly swelling resistant in an aqueous environment. The hydrogels possessed high fatigue resistance, self-recovery, pH-triggered healing capability, shape memory, and reversible gel-sol transition facilitated by pH regulation. Moreover, they show three-dimensional (3D) printing processability by properly adjusting the solution viscosity. The approach may provide a convenient way of obtaining hydrogels having high strength and toughness with a number of desirable properties for a broad range of biomedical applications.

15.
RSC Adv ; 8(30): 16674-16689, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35540543

RESUMO

Strong and tough poly(vinyl alcohol) (PVA)/alginate hydrogen-bonded-ionic dual-physical double-network (DN) hydrogels have been successfully prepared by a facile route of a freeze-thaw (25-25-25 °C) cycle followed by concentrated (1.0 mol L-1 of) aqueous-Ca2+ immersion of PVA/Na alginate (SA) mixed aqueous solutions. It was found that, at mole ratios of the PVA- to SA repeat units of 20/1 to 80/1, the DN gels likely evolved a semi-interpenetrating polymer network (IPN) morphology of rigid alginate networks dispersed in while interlocking with ductile PVA network to accomplish DN synergy that gave their high strength and toughness, where the high alginate rigidity originated probably from its dense cross-link induced syneresis and dispersion along crosslink-defective voids to result in little internal stress concentration. Tentatively mechanistically, as the 20/1-80/1 DN gels were stretched steadily, their mechanical response was gradually differentiated into distinct synergistic states: the sparsely hydrogen-bonded PVA served as a ductile matrix to bear small fractions of the established stresses at its large elongations; whereas the densely ionically (i.e. Ca2+) cross-linked alginate functioned as a rigid skeleton to sustain the remaining larger stresses upon its smaller local strains. Promisingly, this ductile-rigid matrix-skeleton synergistic mechanism of semi-IPN morphology may be universally extended to all A/B DN hydrogels of large A-B rigidity (or cross-link density) contrast, whether the cross-link nature of network(s) A or B is covalent, ionic, hydrogen bonded or van der Waals interacted. The strong and tough DN gels also displayed satisfactory self-recovery of viscoelastic behaviour, in that their Young's modulus and dissipated energy in the uniaxial tensile mode and dynamic storage and loss moduli in the oscillatory shear mode all recovered significantly from non-linear viscoelastic regimes despite different degrees of failure to revert to (quasi)linear viscoelasticity.

16.
Soft Matter ; 13(5): 911-920, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28078338

RESUMO

Toughness and self-healing properties are desirable characteristics in engineered hydrogels used for many practical applications. However, it is still challenging to develop hydrogels exhibiting both of these attractive properties in a single material. In this work, we present the fabrication of fully physically-linked Agar/PAAc-Fe3+ DN gels. These hydrogels exhibited dual physical crosslinking through a hydrogen bonded crosslinked agar network firstly, and a physically linked PAAc-Fe3+ network via Fe3+ coordination interactions secondly. Due to this dual physical crosslinking, the fabricated Agar/PAAc-Fe3+ DN gels exhibited very favorable mechanical properties (tensile strength 320.7 kPa, work of extension 1520.2 kJ m-3, elongation at break 1130%), fast self-recovery properties in Fe3+ solution (100% recovery within 30 min), in 50 °C conditions (100% recovery within 15 min), and under ambient conditions (100% recovery of the initial properties within 60 min), as well as impressive self-healing properties under ambient conditions. All of the data indicate that both the hydrogen bonds in the first network and the ionic coordination interactions in the second network act as reversible sacrificial bonds to dissipate energy, thus conferring high mechanical and recovery properties to the prepared Agar/PAAc-Fe3+ DN gels.

17.
J Biomater Sci Polym Ed ; 28(5): 459-469, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28105891

RESUMO

A rapid prototyping technology, formed by three-dimensional (3-D) printing and then crosslinked by spraying Ca2+ solution, is developed to fabricate a sodium alginate (SA) hydrogel scaffold. The porosity, swelling ratio, and compression modulus of the scaffold are investigated. A friction mechanism is developed by studying the reproducible friction behavior. Our results show that the scaffold can have 3-D structure with a porosity of 52%. The degree of swelling of the SA hydrogel scaffold is 8.5, which is nearly the same as bulk SA hydrogel. SA hydrogel exhibits better compressive resilience than bulk hydrogel despite its lower compressive modulus compared to bulk hydrogel. The SA hydrogel scaffold exhibits a higher frictional force at low sliding velocity (10-6 to 10-3 m/s) compared to bulk SA hydrogel, and they are equal at high sliding velocity (10-2 to 1 m/s). For a small pressure (0.3 kPa), the SA hydrogel scaffold shows good friction reproducibility. In contrast, bulk SA hydrogel shows poor reproducibility with respect to friction behavior. The differences in friction behaviors between the SA hydrogel scaffold and bulk SA hydrogel are related to the structure of the scaffold, which can keep a stable hydrated lubrication layer.


Assuntos
Alginatos/química , Hidrogéis/química , Impressão Tridimensional , Alicerces Teciduais/química , Materiais Biocompatíveis , Carbonato de Cálcio/química , Reagentes de Ligações Cruzadas/química , Fricção , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Teste de Materiais , Fenômenos Mecânicos , Porosidade , Reprodutibilidade dos Testes , Soluções , Engenharia Tecidual
18.
Soft Matter ; 11(15): 3022-33, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25735912

RESUMO

Structural and frictional behaviours of sodium alginate (SA)/polyacrylamide (PAAm) ionic-covalent hybrid, sequential double-network (DN) hydrogels against glass have been investigated in water, NaCl and CaCl2 aqueous solutions using a rotational rheometer. Dilution of adsorptive elastohydrodynamic friction for the PAAm covalent network with repulsive hydrodynamic lubrication for the minor SA ionic network was found to control the frictional stresses of the SA/PAAm gels within between those of the SA and PAAm single-network gels. A tentative qualitative model was proposed to describe the impact of ionic environmental solution on the frictional behaviour of the hybrid gel by selectively affecting the SA-network structure and friction. It was revealed that strong Debye shielding in the NaCl solution significantly reduced the thickness of the electric double layer for hydrodynamic lubrication of the SA network, which made the SA/PAAm gel's friction the highest among the three solutions. Dramatically increased ionic cross-linking of the SA network in the CaCl2 solution, although effectively mediated by the PAAm-network flexible skeleton, still functioned partially to conserve a portion of the SA fractional boundary-friction at the interface, making the friction of the hybrid gel intermediate among the three solutions. In contrast, extreme hydration of the SA network in water sharply increased the volume fraction of its unshielded hydrodynamic lubrication at the interface, which greatly reduced the SA/PAAm's friction to the lowest among the three solutions. We have thus incorporated for the first time both super-lubrication (frictional coefficients of below 10(-2) over low sliding-velocities of 3 × 10(-5) to 2 × 10(-3) m s(-1)) and previously reported high fracture energy (over 9000 J m(-2)) into a single ionic-covalent hybrid DN hydrogel, which is the SA/PAAm (∼1/8.5 w/w) gel in water. Effects of inversion of DN-formation sequence further indicated that frictional behaviours (i.e. frictional stress-sliding velocity profiles) of the hybrid sequential DN hydrogels (SA/PAAm and PAAm/SA), respectively, were primarily determined by those of the second networks (PAAm and SA), presumably due to the formation of first-second network "core-shell" structures at the blob scale. Frictional stress of the SA/PAAm gel was increased monotonically with external normal pressure at all of the sliding velocities investigated in the three solutions, which was in agreement with the predictions from the repulsion-adsorption model proposed by Gong et al.

19.
Macromol Rapid Commun ; 35(7): 741-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24497409

RESUMO

To achieve a fast photochromic response in solid matrix, photochromic molecules/segments have been either dispersed into elastomers via physical doping or linked to glassy polymers by soft units through covalent bonding. However, the former is lack of high mechanical strength and the latter owes the drawback of time-consumption of synthesis. Here, we propose a facile strategy of co-solvent evaporation to prepare polymer-dispersed photochromic organogel where both high mechanical strength of the glassy polymer matrix and solution-like fast photochromism of the photochromic molecule within organogel can be retained concurrently. Glassy PVA matrix and dispersed organogel of 1,3:2,4-di-O-benzylidene-d-sorbitol/poly(propylene glycol) (DBS/PPG) provide high mechanical strength and sufficient free volume for intramolecular rotation of photochromic spiropyran (SP), respectively. Interestingly, these thin films behave a solution-like decoloration the decay rate of which is 65-70 fold faster than that in the SP-directly doped PVA film and only slightly slower than those in their corresponding PPG solutions.


Assuntos
Géis/síntese química , Polímeros/química , Propilenoglicóis/química , Géis/química , Tamanho da Partícula , Processos Fotoquímicos , Soluções , Estresse Mecânico , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...