Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014255

RESUMO

Introduction: Human saphenous veins (SV) are widely used as grafts in coronary artery bypass (CABG) surgery but often fail due to neointima proliferation (NP). NP involves complex interplay between vascular smooth muscle cells (VSMC) and fibroblasts. Little is known, however, regarding the transcriptomic and proteomic dynamics of NP. Here, we performed multi-omics analysis in an ex vivo tissue culture model of NP in human SV procured for CABG surgery. Methods and results: Histological examination demonstrated significant elastin degradation and NP (indicated by increased neointima area and neointima/media ratio) in SV subjected to tissue culture. Analysis of data from 73 patients suggest that the process of SV adaptation and NP may differ according to sex and body mass index. RNA sequencing confirmed upregulation of pro-inflammatory and proliferation-related genes during NP and identified novel processes, including increased cellular stress and DNA damage responses, which may reflect tissue trauma associated with SV harvesting. Proteomic analysis identified upregulated extracellular matrix-related and coagulation/thrombosis proteins and downregulated metabolic proteins. Spatial transcriptomics detected transdifferentiating VSMC in the intima on the day of harvesting and highlighted dynamic alterations in fibroblast and VSMC phenotype and behavior during NP. Specifically, we identified new cell subpopulations contributing to NP, including SPP1 + , LGALS3 + VSMC and MMP2 + , MMP14 + fibroblasts. Conclusion: Dynamic alterations of gene and protein expression occur during NP in human SV. Identification of the human-specific molecular and cellular mechanisms may provide novel insight into SV bypass graft disease.

2.
bioRxiv ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37503031

RESUMO

Introduction: Inflammation is a key pathogenic feature of abdominal aortic aneurysm (AAA). Soluble epoxide hydrolase (sEH) is a pro-inflammatory enzyme that converts cytochrome P450-derived epoxides of fatty acids to the corresponding diols, and pharmacological inhibition of sEH prevented AAA formation. Both cytochrome P450 enzymes and sEH are highly expressed in the liver. Here, we investigated the role of hepatic sEH in AAA using a selective pharmacological inhibitor of sEH and hepatocyte-specific Ephx2 (which encodes sEH gene) knockout (KO) mice in two models of AAA [angiotensin II (AngII) infusion and calcium chloride (CaCl 2 ) application]. Methods and results: sEH expression and activity were strikingly higher in mouse liver compared with aorta and further increased the context of AAA, in conjunction with elevated expression of the transcription factor Sp1 and the epigenetic regulator Jarid1b, which have been reported to positively regulate sEH expression. Pharmacological sEH inhibition, or liver-specific sEH disruption, achieved by crossing sEH floxed mice with albumin-cre mice, prevented AAA formation in both models, concomitant with reduced expression of hepatic sEH as well as complement factor 3 (C3) and serum amyloid A (SAA), liver-derived factors linked to AAA formation. Moreover, sEH antagonism markedly reduced C3 and SAA protein accumulation in the aortic wall. Co-incubation of liver ex vivo with aneurysm-prone aorta resulted in induction of sEH in the liver, concomitant with upregulation of Sp1, Jarid1b, C3 and SAA gene expression, suggesting that the aneurysm-prone aorta secretes factors that activate sEH and downstream inflammatory signaling in the liver. Using an unbiased proteomic approach, we identified a number of dysregulated proteins [ e.g., plastin-2, galectin-3 (gal-3), cathepsin S] released by aneurysm-prone aorta as potential candidate mediators of hepatic sEH induction. Conclusion: We provide the first direct evidence of the liver's role in orchestrating AAA via the enzyme sEH. These findings not only provide novel insight into AAA pathogenesis, but they have potentially important implications with regard to developing effective medical therapies for AAA.

4.
Circulation ; 148(1): 47-67, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37199168

RESUMO

BACKGROUND: Activation of vascular smooth muscle cell (VSMC) inflammation is vital to initiate vascular disease. The role of human-specific long noncoding RNAs in VSMC inflammation is poorly understood. METHODS: Bulk RNA sequencing in differentiated human VSMCs revealed a novel human-specific long noncoding RNA called inflammatory MKL1 (megakaryoblastic leukemia 1) interacting long noncoding RNA (INKILN). INKILN expression was assessed in multiple in vitro and ex vivo models of VSMC phenotypic modulation as well as human atherosclerosis and abdominal aortic aneurysm. The transcriptional regulation of INKILN was verified through luciferase reporter and chromatin immunoprecipitation assays. Loss-of-function and gain-of-function studies and multiple RNA-protein and protein-protein interaction assays were used to uncover a mechanistic role of INKILN in the VSMC proinflammatory gene program. Bacterial artificial chromosome transgenic mice were used to study INKILN expression and function in ligation injury-induced neointimal formation. RESULTS: INKILN expression is downregulated in contractile VSMCs and induced in human atherosclerosis and abdominal aortic aneurysm. INKILN is transcriptionally activated by the p65 pathway, partially through a predicted NF-κB (nuclear factor kappa B) site within its proximal promoter. INKILN activates proinflammatory gene expression in cultured human VSMCs and ex vivo cultured vessels. INKILN physically interacts with and stabilizes MKL1, a key activator of VSMC inflammation through the p65/NF-κB pathway. INKILN depletion blocks interleukin-1ß-induced nuclear localization of both p65 and MKL1. Knockdown of INKILN abolishes the physical interaction between p65 and MKL1 and the luciferase activity of an NF-κB reporter. Furthermore, INKILN knockdown enhances MKL1 ubiquitination through reduced physical interaction with the deubiquitinating enzyme USP10 (ubiquitin-specific peptidase 10). INKILN is induced in injured carotid arteries and exacerbates ligation injury-induced neointimal formation in bacterial artificial chromosome transgenic mice. CONCLUSIONS: These findings elucidate an important pathway of VSMC inflammation involving an INKILN/MKL1/USP10 regulatory axis. Human bacterial artificial chromosome transgenic mice offer a novel and physiologically relevant approach for investigating human-specific long noncoding RNAs under vascular disease conditions.


Assuntos
Aneurisma da Aorta Abdominal , RNA Longo não Codificante , Animais , Humanos , Camundongos , Aneurisma da Aorta Abdominal/metabolismo , Proliferação de Células , Células Cultivadas , Inflamação/genética , Inflamação/metabolismo , Luciferases/metabolismo , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ubiquitina Tiolesterase/metabolismo
6.
Front Immunol ; 14: 1095034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006244

RESUMO

Introduction: Patients with systemic lupus erythematosus (SLE) are at elevated risk for Q10 cardiovascular disease (CVD) due to accelerated atherosclerosis. Compared to heathy control subjects, lupus patients have higher volumes and densities of thoracic aortic perivascular adipose tissue (PVAT), which independently associates with vascular calcification, a marker of subclinical atherosclerosis. However, the biological and functional role of PVAT in SLE has not been directly investigated. Methods: Using mouse models of lupus, we studied the phenotype and function of PVAT, and the mechanisms linking PVAT and vascular dysfunction in lupus disease. Results and discussion: Lupus mice were hypermetabolic and exhibited partial lipodystrophy, with sparing of thoracic aortic PVAT. Using wire myography, we found that mice with active lupus exhibited impaired endothelium-dependent relaxation of thoracic aorta, which was further exacerbated in the presence of thoracic aortic PVAT. Interestingly, PVAT from lupus mice exhibited phenotypic switching, as evidenced by "whitening" and hypertrophy of perivascular adipocytes along with immune cell infiltration, in association with adventitial hyperplasia. In addition, expression of UCP1, a brown/beige adipose marker, was dramatically decreased, while CD45-positive leukocyte infiltration was increased, in PVAT from lupus mice. Furthermore, PVAT from lupus mice exhibited a marked decrease in adipogenic gene expression, concomitant with increased pro-inflammatory adipocytokine and leukocyte marker expression. Taken together, these results suggest that dysfunctional, inflamed PVAT may contribute to vascular disease in lupus.


Assuntos
Aterosclerose , Lúpus Eritematoso Sistêmico , Camundongos , Animais , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Aorta Torácica/metabolismo , Aterosclerose/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo
7.
CRISPR J ; 6(2): 163-175, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37071672

RESUMO

Microinjected transgenes, both large and small, are known to insert randomly into the mouse genome. Traditional methods of mapping a transgene are challenging, thus complicating breeding strategies and accurate interpretation of phenotypes, particularly when a transgene disrupts critical coding or noncoding sequences. As the vast majority of transgenic mouse lines remain unmapped, we developed CRISPR-Cas9 Long-Read Sequencing (CRISPR-LRS) to ascertain transgene integration loci. This novel approach mapped a wide size range of transgenes and uncovered more complex transgene-induced host genome re-arrangements than previously appreciated. CRISPR-LRS offers a facile, informative approach to establish robust breeding practices and will enable researchers to study a gene without confounding genetic issues. Finally, CRISPR-LRS will find utility in rapidly and accurately interrogating gene/genome editing fidelity in experimental and clinical settings.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Camundongos , Sistemas CRISPR-Cas/genética , Transgenes , Genoma/genética , Camundongos Transgênicos
8.
bioRxiv ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36711681

RESUMO

Background: Activation of vascular smooth muscle cells (VSMCs) inflammation is vital to initiate vascular disease. However, the role of human-specific long noncoding RNAs (lncRNAs) in VSMC inflammation is poorly understood. Methods: Bulk RNA-seq in differentiated human VSMCs revealed a novel human-specific lncRNA called IN flammatory M K L1 I nteracting L ong N oncoding RNA ( INKILN ). INKILN expression was assessed in multiple in vitro and ex vivo models of VSMC phenotypic modulation and human atherosclerosis and abdominal aortic aneurysm (AAA) samples. The transcriptional regulation of INKILN was determined through luciferase reporter system and chromatin immunoprecipitation assay. Both loss- and gain-of-function approaches and multiple RNA-protein and protein-protein interaction assays were utilized to uncover the role of INKILN in VSMC proinflammatory gene program and underlying mechanisms. Bacterial Artificial Chromosome (BAC) transgenic (Tg) mice were utilized to study INKLIN expression and function in ligation injury-induced neointimal formation. Results: INKILN expression is downregulated in contractile VSMCs and induced by human atherosclerosis and abdominal aortic aneurysm. INKILN is transcriptionally activated by the p65 pathway, partially through a predicted NF-κB site within its proximal promoter. INKILN activates the proinflammatory gene expression in cultured human VSMCs and ex vivo cultured vessels. Mechanistically, INKILN physically interacts with and stabilizes MKL1, a key activator of VSMC inflammation through the p65/NF-κB pathway. INKILN depletion blocks ILIß-induced nuclear localization of both p65 and MKL1. Knockdown of INKILN abolishes the physical interaction between p65 and MKL1, and the luciferase activity of an NF-κB reporter. Further, INKILN knockdown enhances MKL1 ubiquitination, likely through the reduced physical interaction with the deubiquitinating enzyme, USP10. INKILN is induced in injured carotid arteries and exacerbates ligation injury-induced neointimal formation in BAC Tg mice. Conclusions: These findings elucidate an important pathway of VSMC inflammation involving an INKILN /MKL1/USP10 regulatory axis. Human BAC Tg mice offer a novel and physiologically relevant approach for investigating human-specific lncRNAs under vascular disease conditions.

10.
Nat Cardiovasc Res ; 1(11): 1084-1100, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36424917

RESUMO

All current smooth muscle cell (SMC) Cre mice similarly recombine floxed alleles in vascular and visceral SMCs. Here, we present an Itga8-CreER T2 knock-in mouse and compare its activity with a Myh11-CreER T2 mouse. Both Cre drivers demonstrate equivalent recombination in vascular SMCs. However, Myh11-CreER T2 mice, but not Itga8-CreER T2 mice, display high activity in visceral SMC-containing tissues such as intestine, show early tamoxifen-independent activity, and produce high levels of CreERT2 protein. Whereas Myh11-CreER T2 -mediated knockout of serum response factor (Srf) causes a lethal intestinal phenotype precluding analysis of the vasculature, loss of Srf with Itga8-CreER T2 (Srf Itga8 ) yields viable mice with no evidence of intestinal pathology. Male and female Srf Itga8 mice exhibit vascular contractile incompetence, and angiotensin II causes elevated blood pressure in wild type, but not Srf Itga8 , male mice. These findings establish the Itga8-CreER T2 mouse as an alternative to existing SMC Cre mice for unfettered phenotyping of vascular SMCs following selective gene loss.

11.
Clin Sci (Lond) ; 136(5): 309-321, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35132998

RESUMO

Prostaglandin D2 (PGD2) released from immune cells or other cell types activates its receptors, D prostanoid receptor (DP)1 and 2 (DP1 and DP2), to promote inflammatory responses in allergic and lung diseases. Prostaglandin-mediated inflammation may also contribute to vascular diseases such as abdominal aortic aneurysm (AAA). However, the role of DP receptors in the pathogenesis of AAA has not been systematically investigated. In the present study, DP1-deficient mice and pharmacological inhibitors of either DP1 or DP2 were tested in two distinct mouse models of AAA formation: angiotensin II (AngII) infusion and calcium chloride (CaCl2) application. DP1-deficient mice [both heterozygous (DP1+/-) and homozygous (DP1-/-)] were protected against CaCl2-induced AAA formation, in conjunction with decreased matrix metallopeptidase (MMP) activity and adventitial inflammatory cell infiltration. In the AngII infusion model, DP1+/- mice, but not DP1-/- mice, exhibited reduced AAA formation. Interestingly, compensatory up-regulation of the DP2 receptor was detected in DP1-/- mice in response to AngII infusion, suggesting a potential role for DP2 receptors in AAA. Treatment with selective antagonists of DP1 (laropiprant) or DP2 (fevipiprant) protected against AAA formation, in conjunction with reduced elastin degradation and aortic inflammatory responses. In conclusion, PGD2 signaling contributes to AAA formation in mice, suggesting that antagonists of DP receptors, which have been extensively tested in allergic and lung diseases, may be promising candidates to ameliorate AAA.


Assuntos
Aneurisma da Aorta Abdominal/etiologia , Receptores Imunológicos/fisiologia , Receptores de Prostaglandina/fisiologia , Angiotensina II/farmacologia , Animais , Aneurisma da Aorta Abdominal/prevenção & controle , Masculino , Camundongos , Receptores Imunológicos/antagonistas & inibidores , Receptores de Prostaglandina/antagonistas & inibidores
12.
Cardiovasc Res ; 118(12): 2703-2717, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34550322

RESUMO

AIMS: Intimal hyperplasia is a common feature of vascular remodelling disorders. Accumulation of synthetic smooth muscle cell (SMC)-like cells is the main underlying cause. Current therapeutic approaches including drug-eluting stents are not perfect due to the toxicity on endothelial cells and novel therapeutic strategies are needed. Our preliminary screening for dysregulated cyclic nucleotide phosphodiesterases (PDEs) in growing SMCs revealed the alteration of PDE10A expression. Herein, we investigated the function of PDE10A in SMC proliferation and intimal hyperplasia both in vitro and in vivo. METHODS AND RESULTS: RT-qPCR, immunoblot, and in situ proximity ligation assay were performed to determine PDE10A expression in synthetic SMCs and injured vessels. We found that PDE10A mRNA and/or protein levels are up-regulated in cultured SMCs upon growth stimulation, as well as in intimal cells in injured mouse femoral arteries. To determine the cellular functions of PDE10A, we focused on its role in SMC proliferation. The anti-mitogenic effects of PDE10A on SMCs were evaluated via cell counting, BrdU incorporation, and flow cytometry. We found that PDE10A deficiency or inhibition arrested the SMC cell cycle at G1-phase with a reduction of cyclin D1. The anti-mitotic effect of PDE10A inhibition was dependent on cGMP-dependent protein kinase Iα (PKGIα), involving C-natriuretic peptide (CNP) and particulate guanylate cyclase natriuretic peptide receptor 2 (NPR2). In addition, the effects of genetic depletion and pharmacological inhibition of PDE10A on neointimal formation were examined in a mouse model of femoral artery wire injury. Both PDE10A knockout and inhibition decreased injury-induced intimal thickening in femoral arteries by at least 50%. Moreover, PDE10A inhibition decreased ex vivo remodelling of cultured human saphenous vein segments. CONCLUSIONS: Our findings indicate that PDE10A contributes to SMC proliferation and intimal hyperplasia at least partially via antagonizing CNP/NPR2/cGMP/PKG1α signalling and suggest that PDE10A may be a novel drug target for treating vascular occlusive disease.


Assuntos
Músculo Liso Vascular , Lesões do Sistema Vascular , Animais , Bromodesoxiuridina/metabolismo , Bromodesoxiuridina/farmacologia , Proliferação de Células , Células Cultivadas , GMP Cíclico/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Ciclina D1/metabolismo , Células Endoteliais/metabolismo , Guanilato Ciclase/metabolismo , Guanilato Ciclase/farmacologia , Humanos , Hiperplasia/metabolismo , Hiperplasia/patologia , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Diester Fosfórico Hidrolases/metabolismo , RNA Mensageiro/metabolismo , Remodelação Vascular , Lesões do Sistema Vascular/tratamento farmacológico , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/metabolismo
13.
Cell Rep ; 36(12): 109706, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34551291

RESUMO

The serine synthesis pathway (SSP) involving metabolic enzymes phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH) drives intracellular serine biosynthesis and is indispensable for cancer cells to grow in serine-limiting environments. However, how SSP is regulated is not well understood. Here, we report that activating transcription factor 3 (ATF3) is crucial for transcriptional activation of SSP upon serine deprivation. ATF3 is rapidly induced by serine deprivation via a mechanism dependent on ATF4, which in turn binds to ATF4 and increases the stability of this master regulator of SSP. ATF3 also binds to the enhancers/promoters of PHGDH, PSAT1, and PSPH and recruits p300 to promote expression of these SSP genes. As a result, loss of ATF3 expression impairs serine biosynthesis and the growth of cancer cells in the serine-deprived medium or in mice fed with a serine/glycine-free diet. Interestingly, ATF3 expression positively correlates with PHGDH expression in a subset of TCGA cancer samples.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Neoplasias/patologia , Serina/biossíntese , Fator 3 Ativador da Transcrição/deficiência , Fator 3 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Vias Biossintéticas/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Estabilidade Proteica , Serina/deficiência , Transaminases/genética , Transaminases/metabolismo , Transplante Heterólogo , Fatores de Transcrição de p300-CBP/metabolismo
14.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34312235

RESUMO

Abdominal aortic aneurysm (AAA) is characterized by aorta dilation due to wall degeneration, which mostly occurs in elderly males. Vascular aging is implicated in degenerative vascular pathologies, including AAA. Cyclic nucleotide phosphodiesterases, by hydrolyzing cyclic nucleotides, play critical roles in regulating vascular structure remodeling and function. Cyclic nucleotide phosphodiesterase 1C (PDE1C) expression is induced in dedifferentiated and aging vascular smooth muscle cells (SMCs), while little is known about the role of PDE1C in aneurysm. We observed that PDE1C was not expressed in normal aorta but highly induced in SMC-like cells in human and murine AAA. In mouse AAA models induced by Angiotensin II or periaortic elastase, PDE1C deficiency significantly decreased AAA incidence, aortic dilation, and elastin degradation, which supported a causative role of PDE1C in AAA development in vivo. Pharmacological inhibition of PDE1C also significantly suppressed preestablished AAA. We showed that PDE1C depletion antagonized SMC senescence in vitro and/or in vivo, as assessed by multiple senescence biomarkers, including senescence-associated ß-galactosidase activity, γ-H2AX foci number, and p21 protein level. Interestingly, the role of PDE1C in SMC senescence in vitro and in vivo was dependent on Sirtuin 1 (SIRT1). Mechanistic studies further showed that cAMP derived from PDE1C inhibition stimulated SIRT1 activation, likely through a direct interaction between cAMP and SIRT1, which leads to subsequent up-regulation of SIRT1 expression. Our findings provide evidence that PDE1C elevation links SMC senescence to AAA development in both experimental animal models and human AAA, suggesting therapeutical significance of PDE1C as a potential target against aortic aneurysms.


Assuntos
Aneurisma da Aorta Abdominal/enzimologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Angiotensina II/toxicidade , Animais , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Biomarcadores , Senescência Celular , AMP Cíclico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/genética , Inibidor de Quinase Dependente de Ciclina p21 , Histonas , Masculino , Camundongos , Camundongos Knockout para ApoE , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Regulação para Cima , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
15.
Redox Biol ; 41: 101903, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33667992

RESUMO

Abdominal aortic aneurysm (AAA) is a catastrophic disease with little effective therapy. Myocardin related transcription factor A (MRTFA, MKL1) is a multifaceted transcription factor, regulating diverse biological processes. However, a detailed understanding of the mechanistic role of MKL1 in AAA has yet to be elucidated. In this study, we showed induced MKL1 expression in thoracic and abdominal aneurysmal tissues, respectively in both mice and humans. MKL1 global knockout mice displayed reduced AAA formation and aortic rupture compared with wild-type mice. Both gene deletion and pharmacological inhibition of MKL1 markedly protected mice from aortic dissection, an early event in Angiotensin II (Ang II)-induced AAA formation. Loss of MKL1 was accompanied by reduced senescence/proinflammation in the vessel wall and cultured vascular smooth muscle cells (VSMCs). Mechanistically, a deficiency in MKL1 abolished AAA-induced p38 mitogen activated protein kinase (p38MAPK) activity. Similar to MKL1, loss of MAPK14 (p38α), the dominant isoform of p38MAPK family in VSMCs suppressed Ang II-induced AAA formation, vascular inflammation, and senescence marker expression. These results reveal a molecular pathway of AAA formation involving MKL1/p38MAPK stimulation and a VSMC senescent/proinflammatory phenotype. These data support targeting MKL1/p38MAPK pathway as a potential effective treatment for AAA.


Assuntos
Aneurisma da Aorta Abdominal , Angiotensina II , Animais , Modelos Animais de Doenças , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular , Miócitos de Músculo Liso , Transativadores , Proteínas Quinases p38 Ativadas por Mitógeno
16.
Genome Biol ; 22(1): 83, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33722289

RESUMO

BACKGROUND: Most single nucleotide variants (SNVs) occur in noncoding sequence where millions of transcription factor binding sites (TFBS) reside. Here, a comparative analysis of CRISPR-mediated homology-directed repair (HDR) versus the recently reported prime editing 2 (PE2) system was carried out in mice over a TFBS called a CArG box in the Tspan2 promoter. RESULTS: Quantitative RT-PCR showed loss of Tspan2 mRNA in aorta and bladder, but not heart or brain, of mice homozygous for an HDR-mediated three base pair substitution in the Tspan2 CArG box. Using the same protospacer, mice homozygous for a PE2-mediated single-base substitution in the Tspan2 CArG box displayed similar cell-specific loss of Tspan2 mRNA; expression of an overlapping long noncoding RNA was also nearly abolished in aorta and bladder. Immuno-RNA fluorescence in situ hybridization validated loss of Tspan2 in vascular smooth muscle cells of HDR and PE2 CArG box mutant mice. Targeted sequencing demonstrated variable frequencies of on-target editing in all PE2 and HDR founders. However, whereas no on-target indels were detected in any of the PE2 founders, all HDR founders showed varying levels of on-target indels. Off-target analysis by targeted sequencing revealed mutations in many HDR founders, but none in PE2 founders. CONCLUSIONS: PE2 directs high-fidelity editing of a single base in a TFBS leading to cell-specific loss in expression of an mRNA/long noncoding RNA gene pair. The PE2 platform expands the genome editing toolbox for modeling and correcting relevant noncoding SNVs in the mouse.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Regulação da Expressão Gênica , Mutação Puntual , Animais , Sequência de Bases , Sítios de Ligação , Imunofluorescência/métodos , Edição de Genes/métodos , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Especificidade de Órgãos/genética , Regiões Promotoras Genéticas , Ligação Proteica , Reparo de DNA por Recombinação , Tetraspaninas/genética
17.
Aging (Albany NY) ; 12(15): 15603-15623, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32805724

RESUMO

Vascular aging has been documented as a vital process leading to arterial dysfunction and age-related cardiovascular and cerebrovascular diseases. However, our understanding of the molecular underpinnings of age-related phenotypes in the vascular system is incomplete. Here we performed bulk RNA sequencing in young and old mouse aortae to elucidate age-associated changes in the transcriptome. Results showed that the majority of upregulated pathways in aged aortae relate to immune response, including inflammation activation, apoptotic clearance, and phagocytosis. The top downregulated pathway in aged aortae was extracellular matrix organization. Additionally, protein folding control and stress response pathways were downregulated in the aged vessels, with an array of downregulated genes encoding heat shock proteins (HSPs). We also found that circadian core clock genes were differentially expressed in young versus old aortae. Finally, transcriptome analysis combined with protein expression examination and smooth muscle cell (SMC) lineage tracing revealed that SMCs in aged aortae retained the differentiated phenotype, with an insignificant decrease in SMC marker gene expression. Our results therefore unveiled critical pathways regulated by arterial aging in mice, which will provide important insight into strategies to defy vascular aging and age-associated vascular diseases.


Assuntos
Envelhecimento/genética , Aorta/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Remodelação Vascular/genética , Fatores Etários , Envelhecimento/imunologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Aorta/imunologia , Aorta/patologia , Aorta/fisiopatologia , Ritmo Circadiano/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mapas de Interação de Proteínas , RNA-Seq , Transdução de Sinais
18.
J Mol Cell Cardiol ; 138: 147-157, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31751568

RESUMO

Differentiated vascular smooth muscle cells (VSMCs) are crucial in maintaining vascular homeostasis. While the coding transcriptome of the differentiated VSMC phenotype has been defined, we know little about its noncoding signature. Herein, we identified a Myocardin-induced muscle specific long noncoding RNA (lncRNA) (Mymsl) downregulated upon VSMC phenotypic modulation. We demonstrated an essential role of a proximal consensus CArG element in response to MYOCD/SRF in vitro. To validate the in vivo role of this CArG element, we generated CArG mutant mice via CRISPR-Cas9 genome editing. While the CArG mutation had no impact on the expression of surrounding genes, it abolished Mymsl expression in SMCs, but not skeletal and cardiac muscle. Chromatin immunoprecipitation assays (ChIPs) showed decreased SRF binding to CArG region in mutants whereas the enrichment of H3K79Me2 remained the same. RNA-seq analysis showed a downregulation of matrix genes in aortas from Mymsl knockout mice, which was further validated in injured carotid arteries. Our study defined the transcriptional control of a novel lncRNA in SMCs via a single transcription factor binding site, which may offer a new strategy for generating SMC-specific knockout mouse models. We also provided in vivo evidence supporting the potential importance of Mymsl in vascular pathophysiology.


Assuntos
Vasos Sanguíneos/metabolismo , Miócitos de Músculo Liso/metabolismo , RNA Longo não Codificante/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Transcrição Gênica , Animais , Aorta/metabolismo , Diferenciação Celular , Regulação para Baixo , Matriz Extracelular/metabolismo , Edição de Genes , Genoma , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Fases de Leitura Aberta/genética , Fenótipo , RNA Longo não Codificante/genética , Fator de Resposta Sérica/metabolismo , Transativadores/metabolismo
19.
Am J Physiol Heart Circ Physiol ; 317(5): H969-H980, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31518169

RESUMO

Multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a multigene family with isoform-specific regulation of vascular smooth muscle (VSM) functions. In previous studies, we found that vascular injury resulted in VSM dedifferentiation and reduced expression of the CaMKIIγ isoform in medial wall VSM. Smooth muscle knockout of CaMKIIγ enhanced injury-induced VSM neointimal hyperplasia, whereas CaMKIIγ overexpression inhibited VSM proliferation and neointimal formation. In this study, we evaluated DNA cytosine methylation/demethylation as a mechanism for regulating CaMKII isoform expression in VSM. Inhibition of cytosine methylation with 5-Aza-2'-deoxycytidine significantly upregulated CaMKIIγ expression in cultured VSM cells and inhibited CaMKIIγ downregulation in organ-cultured aorta ex vivo. With the use of methylated cytosine immunoprecipitation, the rat Camk2g promoter was found hypomethylated in differentiated VSM, whereas injury- or cell culture-induced VSM dedifferentiation coincided with Camk2g promoter methylation and decreased expression. We report for the first time that VSM cell phenotype switching is accompanied by marked induction of thymine DNA glycosylase (TDG) protein and mRNA expression in injured arteries in vivo and in cultured VSM synthetic phenotype cells. Silencing Tdg in VSM promoted expression of CaMKIIγ and differentiation markers, including myocardin, and inhibited VSM cell proliferation and injury-induced neointima formation. This study indicates that CaMKIIγ expression in VSM is regulated by cytosine methylation/demethylation and that TDG is an important determinant of this process and, more broadly, VSM phenotype switching and function.NEW & NOTEWORTHY Expression of the calcium calmodulin-dependent protein kinase II-γ isoform (CaMKIIγ) is associated with differentiated vascular smooth muscle (VSM) and negatively regulates proliferation in VSM synthetic phenotype (VSMSyn) cells. This study demonstrates that thymine DNA glycosylase (TDG) plays a key role in regulating CaMKIIγ expression in VSM through promoter cytosine methylation/demethylation. TDG expression is strongly induced in VSMSyn cells and plays key roles in negatively regulating CaMKIIγ expression and more broadly VSM phenotype switching.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Lesões das Artérias Carótidas/enzimologia , Plasticidade Celular , Metilação de DNA , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Timina DNA Glicosilase/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Artéria Carótida Primitiva/enzimologia , Artéria Carótida Primitiva/patologia , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica , Masculino , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Neointima , Fenótipo , Regiões Promotoras Genéticas , Ratos Sprague-Dawley , Transdução de Sinais , Timina DNA Glicosilase/genética
20.
Vascul Pharmacol ; 114: 1-12, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30822570

RESUMO

Next generation sequencing has uncovered a trove of short noncoding RNAs (e.g., microRNAs) and long noncoding RNAs (lncRNAs) that act as molecular rheostats in the control of diverse homeostatic processes. Meanwhile, the tsunamic emergence of clustered regularly interspaced short palindromic repeats (CRISPR) editing has transformed our influence over all DNA-carrying entities, heralding global CRISPRization. This is evident in biomedical research where the ease and low-cost of CRISPR editing has made it the preferred method of manipulating the mouse genome, facilitating rapid discovery of genome function in an in vivo context. Here, CRISPR genome editing components are updated for elucidating lncRNA function in mice. Various strategies are highlighted for understanding the function of lncRNAs residing in intergenic sequence space, as host genes that harbor microRNAs or other genes, and as natural antisense, overlapping or intronic genes. Also discussed is CRISPR editing of mice carrying human lncRNAs as well as the editing of competing endogenous RNAs. The information described herein should assist labs in the rigorous design of experiments that interrogate lncRNA function in mice where complex disease processes can be modeled thus accelerating translational discovery.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes/métodos , RNA Longo não Codificante/genética , Animais , Proteína 9 Associada à CRISPR/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...