Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38557630

RESUMO

There is widespread interest and concern about the evidence and hypothesis that the auditory system is involved in ultrasound neuromodulation. We have addressed this problem by performing acoustic shear wave simulations in mouse skull and behavioral experiments in deaf mice. The simulation results showed that shear waves propagating along the skull did not reach sufficient acoustic pressure in the auditory cortex to modulate neurons. Behavioral experiments were subsequently performed to awaken anesthetized mice with ultrasound targeting the motor cortex or ventral tegmental area (VTA). The experimental results showed that ultrasound stimulation (US) of the target areas significantly increased arousal scores even in deaf mice, whereas the loss of ultrasound gel abolished the effect. Immunofluorescence staining also showed that ultrasound can modulate neurons in the target area, whereas neurons in the auditory cortex required the involvement of the normal auditory system for activation. In summary, the shear waves propagating along the skull cannot reach the auditory cortex and induce neuronal activation. Ultrasound neuromodulation-induced arousal behavior needs direct action on functionally relevant stimulation targets in the absence of auditory system participation.


Assuntos
Crânio , Animais , Camundongos , Crânio/diagnóstico por imagem , Crânio/fisiologia , Córtex Auditivo/fisiologia , Córtex Auditivo/diagnóstico por imagem , Ondas Ultrassônicas , Área Tegmentar Ventral/fisiologia , Área Tegmentar Ventral/diagnóstico por imagem , Área Tegmentar Ventral/efeitos da radiação , Camundongos Endogâmicos C57BL , Masculino
2.
Adv Sci (Weinh) ; 11(19): e2308483, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38482745

RESUMO

Exploring organic semiconductor gas sensors with high sensitivity and selectivity is crucial for the development of sensor technology. Herein, for the first time, a promising chemiresistive organic polymer P-BNT based on a novel π-conjugated triarylboron building block is reported, showcasing an excellent responsivity over 30 000 (Ra/Rg) against 40 ppm of NH3, which is ≈3300 times higher than that of its B-N organic small molecule BN-H. More importantly, a molecular induction strategy to weaken the bond dissociation energy between polymer and NH3 caused by strong acid-base interaction is further executed to optimize the response and recovery time. As a result, the BN-H/P-BNT system with rapid response and recovery times can still exhibit a high responsivity of 718, which is among the highest reported NH3 chemiresistive sensors. Supported by in situ FTIR spectroscopy and theoretical calculations, it is revealed that the N-H fractions in BN-H small molecule promoted the charge distribution on phenyl groups, which increases charge delocalization and is more conducive to gas adsorption in such molecular systems. Notably, these distinctive small molecules also promoted charge transfer and enhanced electron concentration of the P-BNT sensing polymer, thus achieving superior B-N-containing organic molecules with excellent sensing performance.

3.
Angew Chem Int Ed Engl ; 63(15): e202320037, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38348605

RESUMO

With the oxygen conversion efficiency of metal-free carbon-based fuel cells dramatically improved, the building blocks of covalent organic frameworks (COFs) raised principal concerns on the catalytic active sites with indistinct electronic states. Herein, to address this issue, we demonstrate COFs for oxygen reduction reaction (ORR) by regulating the edge-hanging thiophene units, and the molecular geometries are further modulated via positional thiophene isomerization strategy, affording isomeric COF-α with 2-substitution and COF-ß with 3-substitution on the frameworks. The electronic states and intermediate adsorption ability are well-regulated through geometric modification, resulting in controllable chemical activity and local density of π-electrons. Notably, the introduction of thiophene units with different substitution positions into a pristine pure carbon-based COF model COF-Ph achieves excellent activity with a half-wave potential of 0.76 V versus the reversible hydrogen electrode, which is higher than most of those metal-free or metal-based electrocatalysts. Utilizing the combination of theoretical prediction and in situ Raman spectra, we show that the isomeric thiophene skeleton (COF-α and COF-ß) can induce the dangling unit activation, accurately identifying the pentacyclic-carbon (thiophene α-position) adjacent to sulfur atom as active sites. The results suggest that the isomeric dangling groups in COFs are suitable for the ORR with promising geometry construction.

4.
Mater Horiz ; 11(4): 1023-1031, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38054828

RESUMO

Organic semiconductor (OSC) gas sensors with good mechanical flexibility have received considerable attention as commercial and wearable devices. However, due to poor resistance to moisture and low conductivity, the improvement in the sensing capability of individual OSCs is limited. Reported here is a promising pathway to construct a series of conjugated organic polymers (COPs) with well-defined pyrimidine (Py-COP) or boron ß-diketone (BF-COP) units. Unlike traditional metal- or carbon-based hybrid materials, the developed COPs can provide abundant absorption sites for gaseous analytes. As a result, the as-prepared BF-COP results in an excellent sensing response of over 1500 (Ra/Rg) toward 40 ppm of NH3 at room temperature, which is the highest value among those of pristine COPs as n-type sensing materials. Notably, they can maintain their initial sensing responses for two months and 90% relative humidity resistance. Combining the results of in situ Fourier transform infrared spectroscopy and theoretical calculations, the ß-diketone skeleton is found to activate the surface electronic environment, verifying that the electron-deficient B ← O groups are adsorption centers. The B/N-heterocyclic decoration effectively modulates the redox properties and electronic interactions, as well as perturbs charge transfer in typical π-conjugated COPs. These results offer insight into developing highly efficient OSC gas sensors, which potentially have broadened sensing applications in the areas of organoboron chemistry.

5.
Int J Biol Macromol ; 258(Pt 1): 128889, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123039

RESUMO

Color-changing fibers have attracted much attention for their wide applications in camouflage, security warnings, and anti-counterfeiting. The inorganic color-changing material tungsten trioxide (WO3) has been widely investigated for its good stability, controllability, and ease of synthesis. In this study, photochromic alginate fibers (WO3@Ca-Alg) were prepared by incorporating UV-responsive hybrid tungsten trioxide nanoparticles in the fiber production process. The prepared photochromic alginate fibers changed from white to dark blue after 30 min of UV irradiation and returned to their original color after 64 h. It can be seen that WO3@Ca-Alg has the advantage of long color duration. The strength of this fiber reached 2.61 cN/dtex and the limiting oxygen index (LOI) was 40.9 %, which indicates that the fiber exhibited mechanical resistance and flame-retardant properties. After the cross-linking of WO3@Ca-Alg by sodium tetraborate, a new core-shell structure was generated, which was able to encapsulate tungsten trioxide in it, thus reducing the amount of tungsten trioxide loss, and its salt and washing resistance was greatly improved. This photochromic alginate fiber can be mass produced and spun into yarn.


Assuntos
Retardadores de Chama , Nanopartículas , Tungstênio , Alginatos , Óxidos
6.
Opt Express ; 31(20): 33608-33621, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859138

RESUMO

A novel compact on-chip Fourier transform (FT) spectrometer has been proposed based on the silicon-on-insulator (SOI) platform with wide operating bandwidth and high resolution. The spectrometer consists of a 16-channel power splitter and a Mach-Zehnder interferometer (MZI) array of 16 MZIs with linearly increasing optical path length (OPL) difference. We have also developed a spectral retrieval algorithm based on the pattern-coupled sparse Bayesian learning (PCSBL) algorithm and artificial neural network (ANN). The experimental results show that the designed spectrometer has a flat transmission characteristic in the wavelength range between 1500 nm and 1600 nm, indicating that the device has a wide operating bandwidth of 100 nm. In addition, with the assistance of the spectral retrieval algorithm, our spectrometer has the ability to reconstruct narrowband signals with full width at half maximum (FWHM) of 0.5 nm and a triple-peaked signal separated by a 3-nm distance.

7.
Research (Wash D C) ; 6: 0200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37588619

RESUMO

A noninvasive brain-computer interface is a central task in the comprehensive analysis and understanding of the brain and is an important challenge in international brain-science research. Current implanted brain-computer interfaces are cranial and invasive, which considerably limits their applications. The development of new noninvasive reading and writing technologies will advance substantial innovations and breakthroughs in the field of brain-computer interfaces. Here, we review the theory and development of the ultrasound brain functional imaging and its applications. Furthermore, we introduce latest advancements in ultrasound brain modulation and its applications in rodents, primates, and human; its mechanism and closed-loop ultrasound neuromodulation based on electroencephalograph are also presented. Finally, high-frequency acoustic noninvasive brain-computer interface is prospected based on ultrasound super-resolution imaging and acoustic tweezers.

8.
Small Methods ; 7(10): e2300409, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37317015

RESUMO

Linear-conjugated polymers (LCPs) are excellent semiconductor photocatalysts. However, its inherent amorphous structures and simple electron transport channels restrict efficient photoexcited charge separation and transfer. Herein, "2D conjugated engineering" is employed to design high-crystalline polymer photocatalysts with multichannel charge transport by introducing alkoxyphenyl sidechains. The electronic state structure and electron transport pathways of the LCPs are investigated using experimental and theoretical calculations. Consequently, the 2D B←N-containing polymers (2DPBN) exhibit excellent photoelectric characteristics, which enable the efficient separation of electron-hole and rapidly transfer photogenerated carriers to the catalyst surface for efficient catalytic reactions. Significantly, the further hydrogen evolution of 2DPBN-4F heterostructures can be achieved by increasing the fluorine content of the backbones. This study highlights that the rational design of LCP photocatalysts is an effective strategy to spur further interest in photofunctional polymer material applications.

9.
CNS Neurosci Ther ; 29(12): 3829-3841, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37309308

RESUMO

AIMS: Transcranial focus ultrasound stimulation (tFUS) is a promising non-invasive neuromodulation technology. This study aimed to evaluate the modulatory effects of tFUS on human motor cortex (M1) excitability and explore the mechanism of neurotransmitter-related intracortical circuitry and plasticity. METHODS: Single pulse transcranial magnetic stimulation (TMS)-eliciting motor-evoked potentials (MEPs) were used to assessed M1 excitability in 10 subjects. Paired-pulse TMS was used to measure the effects of tFUS on GABA- and glutamate-related intracortical excitability and 1 H-MRS was used to assess the effects of repetitive tFUS on GABA and Glx (glutamine + glutamate) neurometabolic concentrations in the targeting region in nine subjects. RESULTS: The etFUS significantly increased M1 excitability, decreased short interval intracortical inhibition (SICI) and long interval intracortical inhibition (LICI). The itFUS significantly suppressed M1 excitability, increased SICI, LICI, and decreased intracortical facilitation (ICF). Seven times of etFUS decreased the GABA concentration (6.32%), increased the Glx concentration (12.40%), and decreased the GABA/Glx ratio measured by MRS, while itFUS increased the GABA concentration (18.59%), decreased Glx concentration (0.35%), and significantly increased GABA/Glx ratio. CONCLUSION: The findings support that tFUS with different parameters can exert excitatory and inhibitory neuromodulatory effects on the human motor cortex. We provide novel insights that tFUS change cortical excitability and plasticity by regulating excitatory-inhibition balance related to the GABAergic and glutamatergic receptor function and neurotransmitter metabolic level.


Assuntos
Córtex Motor , Humanos , Córtex Motor/fisiologia , Inibição Neural/fisiologia , Ácido Glutâmico/metabolismo , Estimulação Magnética Transcraniana , Potencial Evocado Motor/fisiologia , Ácido gama-Aminobutírico/metabolismo , Neurotransmissores/metabolismo
10.
Front Bioeng Biotechnol ; 11: 1154986, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37101749

RESUMO

Combining synthetic polymers and biomacromolecules prevents the occurrence of thrombogenicity and intimal hyperplasia in small-diameter vascular grafts (SDVGs). In the present study, an electrospinning poly (L)-lactic acid (PLLA) bilayered scaffold is developed to prevent thrombosis after implantation by promoting the capture and differentiation of endothelial colony-forming cells (ECFCs). The scaffold consists of an outer PLLA scaffold and an inner porous PLLA biomimetic membrane combined with heparin (Hep), peptide Gly-Gly-Gly-Arg-Glu-Asp-Val (GGG-REDV), and vascular endothelial growth factor (VEGF). Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and contact angle goniometry were performed to determine successful synthesis. The tensile strength of the outer layer was obtained using the recorded stress/strain curves, and hemocompatibility was evaluated using the blood clotting test. The proliferation, function, and differentiation properties of ECFCs were measured on various surfaces. Scanning electronic microscopy (SEM) was used to observe the morphology of ECFCs on the surface. The outer layer of scaffolds exhibited a similar strain and stress performance as the human saphenous vein via the tensile experiment. The contact angle decreased continuously until it reached 56° after REDV/VEGF modification, and SEM images of platelet adhesion showed a better hemocompatibility surface after modification. The ECFCs were captured using the REDV + VEGF + surface successfully under flow conditions. The expression of mature ECs was constantly increased with the culture of ECFCs on REDV + VEGF + surfaces. SEM images showed that the ECFCs captured by the REDV + VEGF + surface formed capillary-like structures after 4 weeks of culture. The SDVGs modified by REDV combined with VEGF promoted ECFC capture and rapid differentiation into ECs, forming capillary-like structures in vitro. The bilayered SDVGs could be used as vascular devices that achieved a high patency rate and rapid re-endothelialization.

11.
Quant Imaging Med Surg ; 13(3): 1360-1374, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36915341

RESUMO

Background: The widespread application of X-ray computed tomography (CT) imaging in medical screening makes radiation safety a major concern for public health. Sparse-view CT is a promising solution to reduce the radiation dose. However, the reconstructed CT images obtained using sparse-view CT may suffer severe streaking artifacts and structural information loss. Methods: In this study, a novel attention-based dual-branch network (ADB-Net) is proposed to solve the ill-posed problem of sparse-view CT image reconstruction. In this network, downsampled sinogram input is processed through 2 parallel branches (CT branch and signogram branch) of the ADB-Net to independently extract the distinct, high-level feature maps. These feature maps are fused in a specified attention module from 3 perspectives (channel, plane, and spatial) to allow complementary optimizations that can mitigate the streaking artifacts and the structure loss in sparse-view CT imaging. Results: Numerical simulations, an anthropomorphic thorax phantom, and in vivo preclinical experiments were conducted to verify the sparse-view CT imaging performance of the ADB-Net. The proposed network achieved a root-mean-square error (RMSE) of 20.6160, a structural similarity (SSIM) of 0.9257, and a peak signal-to-noise ratio (PSNR) of 38.8246 on numerical data. The visualization results demonstrate that this newly developed network can consistently remove the streaking artifacts while maintaining the fine structures. Conclusions: The proposed attention-based dual-branch deep network, ADB-Net, provides a promising alternative to reconstruct high-quality sparse-view CT images for low-dose CT imaging.

12.
Sensors (Basel) ; 23(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36679449

RESUMO

Fetal brain tissue segmentation is essential for quantifying the presence of congenital disorders in the developing fetus. Manual segmentation of fetal brain tissue is cumbersome and time-consuming, so using an automatic segmentation method can greatly simplify the process. In addition, the fetal brain undergoes a variety of changes throughout pregnancy, such as increased brain volume, neuronal migration, and synaptogenesis. In this case, the contrast between tissues, especially between gray matter and white matter, constantly changes throughout pregnancy, increasing the complexity and difficulty of our segmentation. To reduce the burden of manual refinement of segmentation, we proposed a new deep learning-based segmentation method. Our approach utilized a novel attentional structural block, the contextual transformer block (CoT-Block), which was applied in the backbone network model of the encoder-decoder to guide the learning of dynamic attentional matrices and enhance image feature extraction. Additionally, in the last layer of the decoder, we introduced a hybrid dilated convolution module, which can expand the receptive field and retain detailed spatial information, effectively extracting the global contextual information in fetal brain MRI. We quantitatively evaluated our method according to several performance measures: dice, precision, sensitivity, and specificity. In 80 fetal brain MRI scans with gestational ages ranging from 20 to 35 weeks, we obtained an average Dice similarity coefficient (DSC) of 83.79%, an average Volume Similarity (VS) of 84.84%, and an average Hausdorff95 Distance (HD95) of 35.66 mm. We also used several advanced deep learning segmentation models for comparison under equivalent conditions, and the results showed that our method was superior to other methods and exhibited an excellent segmentation performance.


Assuntos
Aprendizado Profundo , Feminino , Gravidez , Humanos , Lactente , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Feto/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
13.
Small ; 19(17): e2207298, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36703530

RESUMO

The oxygen reduction reaction (ORR) is a key process in green energy conversion technology. Heteroatom doping has been proven to be a prospective strategy to prepare metal-free carbon-based electrocatalysts, but such methods often suffer from uncontrollable catalyst frameworks and imprecise active sites. Herein, an organic heterocyclic strategy is adopted to modulate the charge redistribution of alkynyl-containing conjugated microporous polymers (CMPs) by introducing varied five-membered heterocyclic structures. Among these CMPs, the S, 2N-containing thiadiazole heterocyclic molecule (CMP-Tdz) with carbonized alginate materials (CCA ) displays a remarkable quasi-four-electron-transfer ORR pathway, exhibiting an excellent half-wave potential (E1/2 ) of 0.77 V, coupled with superior methanol tolerance and electrochemical stability, which are among the highest performance in the metal-free organic catalytic material systems. Density functional theory calculations prove that the high catalytic performance of these catalysts originates from the sp-hybridized C atom (site-2) which is activated by their adjacent heterocyclic structures. Importantly, the five-membered heterocyclic structures can also modulate the local charge distribution, and increase dipole moment, with significantly improved catalytic kinetics. This incorporation of chemically designed heterocyclic-containing alkynyl-CMPs provides a new approach to developing efficient metal-free carbon-based electrocatalysts for fuel cells.

14.
Adv Mater ; 35(7): e2209129, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427268

RESUMO

Accurate identification of carbon-based metal-free electrocatalyst (CMFE) activity and enhancing their catalytic efficiency for O2 conversion is an urgent and challenging task. This study reports a promising strategy to simultaneously develop a series of covalent organic frameworks (COFs) with well-defined heterocyclic-free biphenyl or fluorenyl units. Unlike heteroatom doping, the developed method not only supplies methyl-induced molecular configuration to promote activity, but also provides a direct opportunity to identify heteroatom-free carbon active centers. The introduction of methyl groups (MGs) with reversible valence bonds into a pristine biphenyl-based COF results in an excellent performance with a half-wave potential of 0.74 V versus the reversible hydrogen electrode (RHE), which is among the highest values for CMFE-COFs as oxygen reduction reaction (ORR) electrocatalysts. Combined with in situ Raman spectra and theoretical calculations, the MG-bound skeleton (DAF-COF) is found to produce ortho activation, confirming the ortho carbon (site-5) adjacent to MGs as active centers. This may be attributed to the opening and binding of MGs, which effectively regulate the molecular configuration and charge redistribution, as well as improve charge transfer and reduce the energy barrier. This study provides insight into the design of highly efficient metal-free organic electrocatalysts via the regulation of valence bonds.

15.
Environ Technol ; 44(19): 2913-2923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35227172

RESUMO

Antimony (Sb) and arsenic (As), carcinogenic and toxic elements, cause environmental pollution, in addition, the different chemical properties of Sb and As make them difficult to co-removal. In this study, we incorporated of nano-TiO2 in the chitosan matrix to synthesized an efficient adsorption material nano-titania-crosslinked chitosan (TA-chitosan) beads, which was used to simultaneous removal of Sb and As from aqueous solution. TA-chitosan possesses a robust high removal performance for Sb and As under weakly acidic and neutral conditions; however, the removal is significantly inhibited under alkaline pH values. The adsorption kinetics of Sb and As on TA-chitosan conformed to the pseudo-second-order model, indicating that the removal of Sb and As was a chemical adsorption process. The adsorption isotherms of Sb(III/V) and As(III/V) on TA-chitosan follow the Langmuir model, and their maximum adsorption capacities are 70.19, 25.32, 64.52 and 102.89 mg·g-1, respectively. The zeta potential showed that the surface of TA-chitosan was negatively charged over the full pH range upon Sb and As adsorption, demonstrating that negatively charged inner-sphere complexes were formed on TA-chitosan. This work may also provide a new perspective in titanium-chitosan material synthesis and heavy metal ions co-removal.


Assuntos
Arsênio , Quitosana , Metais Pesados , Poluentes Químicos da Água , Antimônio/química , Quitosana/química , Concentração de Íons de Hidrogênio , Adsorção , Poluentes Químicos da Água/química , Cinética
16.
J Mater Chem B ; 10(38): 7847-7861, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36070420

RESUMO

Fungal keratitis (FK) is a refractory ophthalmic disease that can result in vision impairment and even blindness due to the severe fungal invasiveness and excessive inflammatory response. Therefore, antifungal treatment combined with local immunosuppressive therapy is regarded as the most effective strategy to improve the clinical outcome of FK. Oxidized polysaccharides with aldehyde groups possess obvious inhibitory activity towards microorganisms. Herein, we use chondroitin sulfate (CS), a recognized anti-inflammatory biopolysaccharide, to prepare oxidized chondroitin sulfate (OCS) via sodium periodate (NaIO4) oxidation for the treatment of FK. The chemical structure of OCS was characterized by FTIR, 1H NMR, and XPS, revealing that the O-dihydroxy in the D-glucuronic acid unit of CS was selectively broken by NaIO4, forming active aldehyde groups. The introduction of aldehydes not only retains the anti-inflammatory activity but also confers OCS with antifungal property. In vitro antifungal experiments showed that OCS inhibits the growth, represses the biofilm formation and alters the membrane integrity of A. fumigatus. The toxicity of OCS was evaluated by cytotoxicity tests (CCK-8) and the Draize eye test in vitro and in vivo. qRT-PCR confirmed that OCS had similar anti-inflammatory activity as CS. In mice with A. fumigatus keratitis, OCS versus CS or PBS showed an excellent therapeutic effect, characterized by a lower corneal inflammation score, less fungal load, reduced neutrophil recruitment, and the downregulated expression of pro-inflammatory factors. Our findings demonstrate that OCS improves the prognosis of A. fumigatus keratitis in mice by inhibiting the growth of fungi, reducing the recruitment of neutrophils and inhibiting the inflammatory response. It provides innovative ideas for the development and application of OCS in medicine and biomaterials fields.


Assuntos
Aspergilose , Infecções Oculares Fúngicas , Ceratite , Aldeídos , Animais , Anti-Inflamatórios/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergilose/metabolismo , Aspergillus fumigatus , Materiais Biocompatíveis/uso terapêutico , Sulfatos de Condroitina/farmacologia , Infecções Oculares Fúngicas/tratamento farmacológico , Infecções Oculares Fúngicas/microbiologia , Ácido Glucurônico/uso terapêutico , Ceratite/tratamento farmacológico , Ceratite/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Soluções Oftálmicas , Prognóstico , Sincalida/uso terapêutico
17.
Angew Chem Int Ed Engl ; 61(46): e202209583, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36131487

RESUMO

Unsaturated environment is the key to affect catalytic activity of the oxygen reduction reaction (ORR). Unveiling the effect of unsaturated sites toward ORR activity is of importance due to the vague unsaturated states. Reported here is a proof-of-concept strategy on the evaluation of unsaturated bonds (UBs) on adjacent carbon environment by precisely developing two metal-free vinyl-/azo-decorated covalent organic frameworks (Vinyl-COF and Azo-COF) as catalysts. The as-prepared UB-COFs exhibit good performance than the control Py-COF and comparable to the most reported carbon catalysts. Supported by theory calculations and in situ Raman spectra-electrochemistry, it is revealed that the UBs in organic catalysts can produce para-activation, identifying the para C=N groups as active centers. Importantly, the intrinsic UBs can induce local charge redistribution, and make the molecular skeleton possess high isosurface map distribution, with an efficient affinity for oxygen intermediates.

18.
Eur J Pharmacol ; 926: 175041, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35597265

RESUMO

To improve the therapeutic effect of natamycin on fungal keratitis (FK), the grafted derivatives of natamycin and gallic acid were obtained, and the effects of the grafted derivatives on Aspergillus fumigatus (A. fumigatus) keratitis were investigated. The structure of natamycin grafted with gallic acid was identified by FT-IR and UV-Vis, and the successful synthesis of Gallic-Natamycin (GA-NAT) was proved. CCK-8 and the Draize eye test showed that GA-NAT had less cytotoxicity. Then, through in vitro antibacterial experiments such as minimum inhibitory concentration (MIC), adhesion, biofilm formation, and calcium fluorescence staining and in vivo experiments such as clinical score and plate counting, the results showed that GA-NAT had similar antifungal activity to natamycin, but had a better therapeutic effect than natamycin. Myeloperoxidase assay and immunofluorescence staining also showed that GA-NAT significantly inhibited neutrophil recruitment and activity. Moreover, It was further found that GA-NAT could inhibit the mRNA and protein expressions of LOX-1, TNF-α, and IL-1ß. These results indicated that GA-NAT inhibited the fungal growth, reduced the neutrophil infiltration into cornea, and down-regulated the expression of inflammatory factors in lesions, which provides a new choice for FK treatment.


Assuntos
Aspergilose , Infecções Oculares Fúngicas , Ceratite , Lacase , Natamicina , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergilose/metabolismo , Aspergilose/microbiologia , Aspergillus fumigatus , Infecções Oculares Fúngicas/tratamento farmacológico , Infecções Oculares Fúngicas/metabolismo , Infecções Oculares Fúngicas/microbiologia , Ácido Gálico/farmacologia , Ácido Gálico/uso terapêutico , Ceratite/tratamento farmacológico , Ceratite/metabolismo , Ceratite/microbiologia , Lacase/farmacologia , Lacase/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Natamicina/farmacologia , Natamicina/uso terapêutico , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Opt Express ; 30(4): 6397-6412, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209579

RESUMO

A novel optical performance monitoring (OPM) method based on Fourier transform spectrum analysis (FTSA) is designed for optical signal-to-noise ratio (OSNR) monitoring, modulation format and baud rate recognition in the presence of fiber nonlinearities. The interference intensities, which reflect spectral features of signals, are obtained by exploiting the FTSA consisting of two-stage Mach-Zehnder interferometer (MZI) arrays. Then, the mapping between the OPM parameters and modulated interference intensity (MII) is characterized using neural networks without prior knowledge of the configuration of the communication network. Results show that optical performance parameters are monitored simultaneously. Meanwhile, the accuracy of modulation format and baud rate recognition is 94.8% and most (over 86%) OSNR monitoring errors are less than ±1 dB under complex transmission conditions in presence of frequency offset and delay jitter. Besides, the FTSA can be fabricated on a silicon on insulator (SOI) platform with a large fabrication tolerance, and it has broad working bandwidth to support the full optical communication band. Therefore, the proposed OPM method is capable of integration and miniaturization, which can be ubiquitously applied in network intermediate nodes to support the construction of smart optical networks.

20.
Artigo em Inglês | MEDLINE | ID: mdl-35073268

RESUMO

MR guided focused ultrasound (MRgFUS) therapy has been a promising treatment modality for many neurological disorders. However, the lack of real-time image processing software platform sets barriers for relevant pre-clinical researches. This work intends to develop an integrated software for MRgFUS therapy. The software contains three functional modules: a communication module, an image post-processing module, and a visualization module. The communication module provides a data interface with an open-source MR image reconstruction platform (Gadgetron) to receive the reconstructed MR images in real-time. The post-processing module contains the algorithms of image coordinate registration, focus localization by MR acoustic radiation force imaging (MR-ARFI), temperature and thermal dose calculations, motion correction, and temperature feedback control. The visualization module displays monitoring information and provides a user-machine interface. The software was tested to be compatible with systems from two different vendors and validated in multiple scenarios for MRgFUS. The software was tested in many ex vivo and in vivo experiments to validate its functions. The in vivo transcranial focus localization experiments were carried out for targeting the focused ultrasound in neuromodulation.


Assuntos
Processamento de Imagem Assistida por Computador , Software , Algoritmos , Humanos , Imageamento por Ressonância Magnética , Movimento (Física) , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...