Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 114, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764013

RESUMO

BACKGROUND: Cotton is a major world cash crop and an important source of natural fiber, oil, and protein. Drought stress is becoming a restrictive factor affecting cotton production. To facilitate the development of drought-tolerant cotton varieties, it is necessary to study the molecular mechanism of drought stress response by exploring key drought-resistant genes and related regulatory factors. RESULTS: In this study, two cotton varieties, ZY007 (drought-sensitive) and ZY168 (drought-tolerant), showing obvious phenotypic differences under drought stress, were selected. A total of 25,898 drought-induced genes were identified, exhibiting significant enrichment in pathways related to plant stress responses. Under drought induction, At subgenome expression bias was observed at the whole-genome level, which may be due to stronger inhibition of Dt subgenome expression. A gene co-expression module that was significantly associated with drought resistance was identified. About 90% of topologically associating domain (TAD) boundaries were stable, and 6613 TAD variation events were identified between the two varieties under drought. We identified 92 genes in ZY007 and 98 in ZY168 related to chromatin 3D structural variation and induced by drought stress. These genes are closely linked to the cotton response to drought stress through canonical hormone-responsive pathways, modulation of kinase and phosphatase activities, facilitation of calcium ion transport, and other related molecular mechanisms. CONCLUSIONS: These results lay a foundation for elucidating the molecular mechanism of the cotton drought response and provide important regulatory locus and gene resources for the future molecular breeding of drought-resistant cotton varieties.


Assuntos
Cromatina , Secas , Regulação da Expressão Gênica de Plantas , Gossypium , Gossypium/genética , Gossypium/fisiologia , Cromatina/metabolismo , Estresse Fisiológico/genética , Genes de Plantas
2.
Trends Plant Sci ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38061928

RESUMO

Development of complex traits necessitates the functioning and coordination of intricate regulatory networks involving multiple genes. Understanding 3D chromatin structure can facilitate insight into the regulation of gene expression by regulatory elements. This potential, of visualizing the role of chromatin organization in the evolution and function of regulatory elements, remains largely unexplored. Here, we describe new perspectives that arise from the dual considerations of sequence variation of regulatory elements and chromatin structure, with a special focus on whole-genome doubling or polyploidy. We underscore the significance of hierarchical chromatin organization in gene regulation during evolution. In addition, we describe strategies for exploring chromatin organization in future investigations of regulatory evolution in plants, enabling insights into the evolutionary influence of regulatory elements on gene expression and, hence, phenotypes.

3.
Bioinformatics ; 39(9)2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37725346

RESUMO

SUMMARY: TAD boundaries are essential for organizing the chromatin spatial structure and regulating gene expression in eukaryotes. However, for large-scale pan-3D genome research, identifying conserved and specific TAD boundaries across different species or individuals is computationally challenging. Here, we present Tcbf, a rapid and powerful Python/R tool that integrates gene synteny blocks and homologous sequences to automatically detect conserved and specific TAD boundaries among multiple species, which can efficiently analyze huge genome datasets, greatly reduce the computational burden and enable pan-3D genome research. AVAILABILITY AND IMPLEMENTATION: Tcbf is implemented by Python/R and is available at https://github.com/TcbfGroup/Tcbf under the MIT license.


Assuntos
Genoma , Software , Humanos , Sintenia , Eucariotos/genética , Cromatina
4.
Nat Genet ; 54(12): 1959-1971, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36474047

RESUMO

Phenotypic diversity and evolutionary innovation ultimately trace to variation in genomic sequence and rewiring of regulatory networks. Here, we constructed a pan-genome of the Gossypium genus using ten representative diploid genomes. We document the genomic evolutionary history and the impact of lineage-specific transposon amplification on differential genome composition. The pan-3D genome reveals evolutionary connections between transposon-driven genome size variation and both higher-order chromatin structure reorganization and the rewiring of chromatin interactome. We linked changes in chromatin structures to phenotypic differences in cotton fiber and identified regulatory variations that decode the genetic basis of fiber length, the latter enabled by sequencing 1,005 transcriptomes during fiber development. We showcase how pan-genomic, pan-3D genomic and genetic regulatory data serve as a resource for delineating the evolutionary basis of spinnable cotton fiber. Our work provides insights into the evolution of genome organization and regulation and will inform cotton improvement by enabling regulome-based approaches.


Assuntos
Genômica , Gossypium , Gossypium/genética , Cromatina
5.
Genomics ; 113(5): 3405-3414, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34311045

RESUMO

Structural variations (SVs) are recognized to have an important role in transcriptional regulation, especially in the light of resolved 3D genome structure using high-throughput chromosome conformation capture (Hi-C) technology in mammals. However, the effect of SVs on 3D genome organization in plants remains rarely understood. In this study, we identified 295,496 SVs and 5251 topologically associating domains (TADs) in two diploid and two tetraploid cottons. We observed that approximately 16% of SVs occurred in TAD boundary regions that were called boundary affecting-structural variations (BA-SVs), and had a large effect on disrupting TAD organization. Nevertheless, SVs preferred occurring in TAD interior instead of TAD boundary, probably associated with the relaxed evolutionary selection pressure. We noticed the biased evolution of the At and Dt subgenomes of tetraploid cottons, in terms of SV-mediated disruption of 3D genome structure relative to diploids. In addition, we provide evidence showing that both SVs and TAD disruption could lead to expression difference of orthologous genes. This study advances our understanding of the effect of SVs on 3D genome organization and gene expression regulation in plants.


Assuntos
Genoma , Tetraploidia , Animais , Cromatina , Cromossomos , Regulação da Expressão Gênica , Mamíferos/genética
6.
Plant Dis ; 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33999711

RESUMO

Brassica juncea var. multisecta, a leafy mustard, is widely grown in China as a vegetable (Fahey 2016). In May 2018, blackleg symptoms, grayish lesions with black pycnidia, were found on stems and leaves of B. juncea var. multisecta during disease surveys in Wuhan, Hubei Province. Disease incidence was approximately 82% of plants in the surveyed fields (~1 ha in total). To determine the causal agent of the disease, twelve diseased petioles were surface-sterilized and then cultured on potato dextrose agar (PDA) at 20˚C for 5 days. Six fungal isolates (50%) were obtained. All showed fluffy white aerial mycelia on the colony surface and produced a yellow pigment in PDA. In addition, pink conidial ooze formed on top of pycnidia after 20 days of cultivation on a V8 juice agar. Pycnidia were black-brown and globose with average size of 145 × 138 µm and ranged between 78 to 240 × 71 to 220 µm, n = 50. The conidia were cylindrical, hyaline, and 5.0 × 2.1 µm (4 to 7.1 × 1.4 to 2.9 µm, n=100). These results indicated that the fungus was Leptosphaeria biglobosa rather than L. maculans, as only the former produces yellow pigment (Williams and Fitt 1999). For molecular confirmation of identify, genomic DNAs were extracted and tested through polymerase chain reaction (PCR) assay using the species-specific primers LbigF, LmacF, and LmacR (Liu et al. 2006), of which DNA samples of L. maculans isolate UK-1 (kindly provided by Dr. Yongju Huang of University of Hertfordshire) and L. biglobosa 'brassicae' isolate B2003 (Cai et al. 2014) served as controls. Moreover, the sequences coding for actin, ß-tubulin, and the internal transcribed spacer (ITS) region of ribosomal DNA (Vincenot et al. 2008) of isolates HYJ-1, HYJ-2 and HYJ-3 were also cloned and sequenced. All six isolates only produced a 444-bp DNA fragment, the same as isolate B2003, indicating they belonged to L. biglobosa 'brassicae', as L. maculans generates a 331-bp DNA fragment. In addition, sequences of ITS (GenBank accession no. MN814012, MN814013, MN814014), actin (MN814292, MN814293, MN814294), and ß-tubulin (MN814295, MN814296, MN814297) of isolates HYJ-1, HYJ-2 and HYJ-3 were 100% identical to the ITS (KC880981), actin (AY748949), and ß-tubulin (AY748995) of L. biglobosa 'brassicae' strains in GenBank, respectively. To determine their pathogenicity, needle-wounded cotyledons (14 days) of B. juncea var. multisecta 'K618' were inoculated with a conidial suspension (1 × 107 conidia/ml, 10 µl per site) of two isolates HYJ-1 and HYJ-3, twelve seedlings per isolate (24 cotyledons), while the control group was only treated with sterile water. All seedlings were incubated in a growth chamber (20°C, 100% relative humidity under 12 h of light/12 h of dark) for 10 days. Seedlings inoculated with conidia showed necrotic lesions, whereas control group remained asymptomatic. Two fungal isolates showing the same culture morphology to the original isolates were re-isolated from the necrotic lesions. Therefore, L. biglobosa 'brassicae' was confirmed to be the causal agent of blackleg on B. juncea var. multisecta in China. L. biglobosa 'brassicae' has been reported on many Brassica crops in China, such as B. napus (Fitt et al. 2006), B. oleracea (Zhou et al. 2019), B. juncea var. multiceps (Zhou et al. 2019), B. juncea var. tumida (Deng et al. 2020). To our knowledge this is the first report of L. biglobosa 'brassicae' causing blackleg on B. juncea var. multisecta in China, and its occurrence might be a new threat to leafy mustard production of China.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...