Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 337: 117750, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36934501

RESUMO

High value-added products recovery from algal-bacterial granular sludge (ABGS) has received great attention recently. This study aimed to explore the role of different light wavelengths in regulating granule formation, protein and lipid production, and microbial functions. Bacterial granular sludge (BGS, R0) was most conducive to forming ABGS under blue (R2) light with the highest chlorophyll a (10.2 mg/g-VSS) and diameter (1800 µm), followed by red (R1) and white (R3) lights. R0-R3 acquired high protein contents (>164.8 mg/g-VSS) with essential amino acids above 44.4%, all of which were suitable for recycling, but R2 was the best. Also, blue light significantly increased total lipid production, while red light promoted the accumulation of some unsaturated fatty acids (C18:2 and C18:3). Some unique algae and dominant bacteria (e.g., Stigeoclonium, Chlamydomonas, and Flavobacteria) enrichment and some key functions (e.g., amino acid, fatty acid, and lipid biosynthesis) up-regulation in R2 might help to improve proteins and lipids quality. Combined, this study provides valuable guidance for protein and lipid recovery from ABGS.


Assuntos
Reatores Biológicos , Esgotos , Clorofila A/metabolismo , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Ácidos Graxos/metabolismo
2.
J Invest Dermatol ; 143(7): 1279-1288.e9, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36708950

RESUMO

Although effective in treating actinic damage, topical photodynamic therapy (PDT) has been shown to be immunosuppressive through unknown mechanisms, which could potentially limit its effectiveness. Multiple types of environmental stressors, including PDT, can produce the immunosuppressive lipid mediator platelet-activating factor (PAF). Because PAF can produce subcellular microvesicle particles (MVPs), these studies tested whether PDT can generate PAF and MVP release and whether these are involved in PDT-induced immunosuppression. Previously, topical PDT using blue light and 5-aminolevulinic acid was found to be a potent stimulus for PAF production in mice and human skin explants and human patients, and we show that experimental PDT also generates high levels of MVP. PDT-generated MVPs were independent of the PAF receptor but were dependent on the MVP-generating enzyme acid sphingomyelinase. Patients undergoing topical PDT treatment to at least 10% of body surface area showed local and systemic immunosuppression as measured by inhibition of delayed-type hypersensitivity reactions. Finally, using a murine model of contact hypersensitivity, PDT immunosuppression was blocked by genetic and pharmacologic inhibition of acid sphingomyelinase and genetic inhibition of PAF receptor signaling. These studies describe a mechanism involving MVP through which PDT exerts immunomodulatory effects, providing a potential target to improve its effectiveness.


Assuntos
Fotoquimioterapia , Esfingomielina Fosfodiesterase , Humanos , Camundongos , Animais , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielina Fosfodiesterase/farmacologia , Pele/metabolismo , Ácido Aminolevulínico , Tolerância Imunológica , Imunossupressores/farmacologia , Fármacos Fotossensibilizantes
3.
J Colloid Interface Sci ; 628(Pt A): 318-330, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35932669

RESUMO

Peroxymonosulfate (PMS) heterogeneous catalysis dominated by nonradical pathway showed excellent adaptability for pollutant removal in complex water matrixes. Herein, ultra-small Fe-doped MoS2 nanosheets with N-doped carbon intercalation (CF-MoS2) were synthesized via a one-step hydrothermal method to treat high salinity organic wastewater. CF-MoS2 exhibited an expanded interlayer spacing by 1.63 times and the specific surface area by 9 times compared with Fe-doped MoS2 (F-MoS2), substantially increasing the active sites. Homogeneous Fe2+ catalytic experiments confirmed that the promotion of carbon intercalated MoS2 (C-MoS2) on Fe3+/Fe2+ redox cycle was much higher than pure MoS2. Besides, the considerable removal of tetracycline (TC) under high salinity conditions (0-7.1%) was attributed to the dominant role of PMS nonradical oxidation pathways, including 1O2 and surface-bound radicals. The catalytic sites included Fe3+/Fe2+, Mo4+/Mo5+/Mo6+, C=O, pyridine N, pyrrolic N and hydroxyl groups. Finally, density functional theory (DFT) was employed to get the radical electrophilic attack sites and nucleophile attack sites of TC, and the results were consistent with the TC degradation products determined by HPLC-MS. This work would broaden the application of MoS2-based catalysts, especially for PMS catalytic removal of organic pollutants from high salinity wastewater.


Assuntos
Poluentes Ambientais , Purificação da Água , Carbono/química , Poluentes Ambientais/química , Molibdênio/química , Peróxidos/química , Piridinas , Salinidade , Tetraciclina , Águas Residuárias , Água
4.
Mol Pharm ; 17(12): 4548-4563, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32965120

RESUMO

It is well established that polymers adopt a range of conformations and solution-state organization in response to varying solution environments, although very little work has been done to understand how these effects might impact the physical stability and bioavailability of spray-dried amorphous dispersions (SDDs). Potentially relevant solution-state polymer-solvent/cosolute interactions include preferential solvation, hydrodynamic size (i.e., polymer swelling or collapse), and solvent quality effects (i.e., attractive or repulsive self-interactions). Of particular interest is the investigation of preferential solvation, defined as the relative attraction or rejection of a cosolvent and/or cosolute from the local environment of a solvated macromolecule, which often occurs in multicomponent macromolecular solutions. As spray drying and other solvent-based dispersion processing necessitates the use of complex media consisting of at least three or more components (drug, polymer, solvent(s), and other possible excipients), the prevalence of this phenomenon is likely. This work characterizes largely unexplored solution-state properties in model spray-dried dispersion feed solutions using light scattering and viscometric techniques to add greater context and guidance in studying these information-rich materials. These systems are found to exhibit complex non-intuitive behavior, which serves to highlight the potential utility of preferential solvation in spray-dried dispersion processing and stability. It is hypothesized that solution-state organization of the liquid feed can be engineered and translated to the solid-state for the optimization of SDD properties.


Assuntos
Composição de Medicamentos/métodos , Excipientes/química , Polímeros/química , Solventes/química , Disponibilidade Biológica , Química Farmacêutica , Dessecação , Estabilidade de Medicamentos , Transição de Fase , Solubilidade , Secagem por Atomização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...