Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 135(8): 2627-2639, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35748907

RESUMO

KEY MESSAGE: Stem rust resistance genes, SrRL5271 and Sr672.1 as well as SrCPI110651, from Aegilops tauschii, the diploid D genome progenitor of wheat, are sequence variants of Sr46 differing by 1-2 nucleotides leading to non-synonymous amino acid substitutions. The Aegilops tauschii (wheat D-genome progenitor) accessions RL 5271 and CPI110672 were identified as resistant to multiple races (including the Ug99) of the wheat stem rust pathogen Puccinia graminis f. sp. tritici (Pgt). This study was conducted to identify the stem rust resistance (Sr) gene(s) in both accessions. Genetic analysis of the resistance in RL 5271 identified a single dominant allele (SrRL5271) controlling resistance, whereas resistance segregated at two loci (SR672.1 and SR672.2) for a cross of CPI110672. Bulked segregant analysis placed SrRL5271 and Sr672.1 in a region on chromosome arm 2DS that encodes Sr46. Molecular marker screening, mapping and genomic sequence analysis demonstrated SrRL5271 and Sr672.1 are alleles of Sr46. The amino acid sequence of SrRL5271 and Sr672.1 is identical but differs from Sr46 (hereafter referred to as Sr46_h1 by following the gene nomenclature in wheat) by a single amino acid (N763K) and is thus designated Sr46_h2. Screening of a panel of Ae. tauschii accessions identified an additional allelic variant that differed from Sr46_h2 by a different amino acid (A648V) and was designated Sr46_h3. By contrast, the protein encoded by the susceptible allele of Ae. tauschii accession AL8/78 differed from these resistance proteins by 54 amino acid substitutions (94% nucleotide sequence gene identity). Cloning and complementation tests of the three resistance haplotypes confirmed their resistance to Pgt race 98-1,2,3,5,6 and partial resistance to Pgt race TTRTF in bread wheat. The three Sr46 haplotypes, with no virulent races detected yet, represent a valuable source for improving stem resistance in wheat.


Assuntos
Aegilops , Basidiomycota , Aegilops/genética , Aminoácidos , Mapeamento Cromossômico , Cromossomos de Plantas , Diploide , Resistência à Doença/genética , Genes de Plantas , Haplótipos , Doenças das Plantas/genética , Puccinia
2.
G3 (Bethesda) ; 11(8)2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-34849816

RESUMO

Resistance breeding is an effective approach against wheat stem rust caused by Puccinia graminis f. sp. tritici (Pgt). The synthetic hexaploid wheat line Largo (pedigree: durum wheat "Langdon" × Aegilops tauschii PI 268210) was found to have resistance to a broad spectrum of Pgt races including the Ug99 race group. To identify the stem rust resistance (Sr) genes, we genotyped a population of 188 recombinant inbred lines developed from a cross between the susceptible wheat line ND495 and Largo using the wheat Infinium 90 K SNP iSelect array and evaluated the population for seedling resistance to the Pgt races TTKSK, TRTTF, and TTTTF in the greenhouse conditions. Based on genetic linkage analysis using the marker and rust data, we identified six quantitative trait loci (QTL) with effectiveness against different races. Three QTL on chromosome arms 6AL, 2BL, and 2BS corresponded to Sr genes Sr13c, Sr9e, and a likely new gene from Langdon, respectively. Two other QTL from PI 268210 on 2DS and 1DS were associated with a potentially new allele of Sr46 and a likely new Sr gene, respectively. In addition, Sr7a was identified as the underlying gene for the 4AL QTL from ND495. Knowledge of the Sr genes in Largo will help to design breeding experiments aimed to develop new stem rust-resistant wheat varieties. Largo and its derived lines are particularly useful for introducing two Ug99-effective genes Sr13c and Sr46 into modern bread wheat varieties. The 90 K SNP-based high-density map will be useful for identifying the other important genes in Largo.


Assuntos
Basidiomycota , Resistência à Doença , Basidiomycota/genética , Mapeamento Cromossômico , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética
3.
Plant J ; 106(6): 1674-1691, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33825238

RESUMO

The resistance gene Sr13 is one of the most important genes in durum wheat for controlling stem rust caused by Puccinia graminis f. sp. tritici (Pgt). The Sr13 functional gene CNL13 has haplotypes R1, R2 and R3. The R1/R3 and R2 haplotypes were originally designated as alleles Sr13a and Sr13b, respectively. To detect additional Sr13 alleles, we developed Kompetitive allele specific PCR (KASP™) marker KASPSr13 and four semi-thermal asymmetric reverse PCR markers, rwgsnp37-rwgsnp40, based on the CNL13 sequence. These markers were shown to detect R1, R2 and R3 haplotypes in a panel of diverse tetraploid wheat accessions. We also observed the presence of Sr13 in durum line CAT-A1, although it lacked any of the known haplotypes. Sequence analysis revealed that CNL13 of CAT-A1 differed from the susceptible haplotype S1 by a single nucleotide (C2200T) in the leucine-rich repeat region and differed from the other three R haplotypes by one or two additional nucleotides, confirming that CAT-A1 carries a new (R4) haplotype. Stem rust tests on the monogenic, transgenic and mutant lines showed that R1 differed from R3 in its susceptibility to races TCMJC and THTSC, whereas R4 differed from all other haplotypes for susceptibility to TTKSK, TPPKC and TCCJC. Based on these differences, we designate the R1, R3 and R4 haplotypes as alleles Sr13a, Sr13c and Sr13d, respectively. This study indicates that Sr13d may be the primitive functional allele originating from the S1 haplotype via a point mutation, with the other three R alleles probably being derived from Sr13d through one or two additional point mutations.


Assuntos
Alelos , Evolução Biológica , Variação Genética , Proteínas de Plantas/metabolismo , Tetraploidia , Triticum/genética , Sequência de Aminoácidos , Mapeamento Cromossômico , Cromossomos de Plantas , DNA de Plantas , Haplótipos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Puccinia
4.
Sci Rep ; 11(1): 777, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33437028

RESUMO

The nuclear fertility restorer gene Rf5 in HA-R9, originating from the wild sunflower species Helianthus annuus, is able to restore the widely used PET1 cytoplasmic male sterility in sunflowers. Previous mapping placed Rf5 at an interval of 5.8 cM on sunflower chromosome 13, distal to a rust resistance gene R11 at a 1.6 cM genetic distance in an SSR map. In the present study, publicly available SNP markers were further mapped around Rf5 and R11 using 192 F2 individuals, reducing the Rf5 interval from 5.8 to 0.8 cM. Additional SNP markers were developed in the target region of the two genes from the whole-genome resequencing of HA-R9, a donor line carrying Rf5 and R11. Fine mapping using 3517 F3 individuals placed Rf5 at a 0.00071 cM interval and the gene co-segregated with SNP marker S13_216392091. Similarly, fine mapping performed using 8795 F3 individuals mapped R11 at an interval of 0.00210 cM, co-segregating with two SNP markers, S13_225290789 and C13_181790141. Sequence analysis identified Rf5 as a pentatricopeptide repeat-encoding gene. The high-density map and diagnostic SNP markers developed in this study will accelerate the use of Rf5 and R11 in sunflower breeding.


Assuntos
Passeio de Cromossomo/métodos , Cromossomos de Plantas , Clonagem Molecular/métodos , Fertilidade/genética , Genes de Plantas , Helianthus/genética , Ligação Genética , Melhoramento Vegetal/métodos , Análise de Sequência de DNA/métodos
5.
Theor Appl Genet ; 132(11): 3177-3189, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31494680

RESUMO

KEY MESSAGE: Two stem rust resistance genes identified on chromosome arms 2BL and 6AL of the cultivated emmer wheat accession PI 193883 can be used for protecting modern varieties against Ug99 strains. The wheat research community consistently strives to identify new genes that confer resistance to stem rust caused by the fungal pathogen Puccinia graminis f. sp. tritici Eriks & E. Henn (Pgt). In the current study, our objective was to identify and genetically characterize the stem rust resistance derived from the cultivated emmer accession PI 193883. A recombinant inbred line population developed from a cross between the susceptible durum wheat line Rusty and PI 193883 was genotyped and evaluated for reaction to Pgt races TTKSK, TRTTF, and TMLKC. Two QTLs conferring resistance were identified on chromosome arms 2BL (QSr.fcu-2B) and 6AL (QSr.fcu-6A). The stem rust resistance gene (Sr883-2B) underlying QSr.fcu-2B was recessive, and based on its physical location it is located proximal to the Sr9 region. QSr.fcu-6A was located in the Sr13 region, but PI 193883 is known to carry the susceptible haplotype S4 for Sr13, indicating that the gene underlying QSr.fcu-6A (Sr883-6A) is likely a new allele of Sr13 or a gene residing close to Sr13. Three IWGSC scaffold-based simple sequence repeat (SSR) and two SNP-based semi-thermal asymmetric reverse PCR (STARP) markers were developed for the Sr883-2B region, and one STARP marker was developed for Sr883-6A. Sr883-2B was epistatic to Sr883-6A for reaction to TTKSK and TRTTF, and the two genes had additive effects for TMLKC. These two genes and the markers developed in this research provide additional resources and tools for the improvement in stem rust resistance in durum and common wheat breeding programs.


Assuntos
Basidiomycota/patogenicidade , Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/genética , Triticum/genética , Alelos , Mapeamento Cromossômico , Marcadores Genéticos , Genótipo , Haplótipos , Repetições de Microssatélites , Doenças das Plantas/microbiologia , Locos de Características Quantitativas
6.
PLoS One ; 14(3): e0213065, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30822322

RESUMO

Sclerotinia basal stalk rot (BSR) and downy mildew are major diseases of sunflowers worldwide. Breeding for BSR resistance traditionally relies upon cultivated sunflower germplasm that has only partial resistance thus lacking an effective resistance against the pathogen. In this study, we report the transfer of BSR resistance from sunflower wild species, Helianthus praecox, into cultivated sunflower and molecular assessment of the introgressed segments potentially associated with BSR resistance using the genotyping-by-sequencing (GBS) approach. Eight highly BSR-resistant H. praecox introgression lines (ILs), H.pra 1 to H.pra 8, were developed. The mean BSR disease incidence (DI) for H.pra 1 to H.pra 8 across environments for four years ranged from 1.2 to 11.1%, while DI of Cargill 270 (susceptible check), HA 89 (recurrent parent), HA 441 and Croplan 305 (resistant checks) was 36.1, 31.0, 19.5, and 11.6%, respectively. Molecular assessment using GBS detected the presence of H. praecox chromosome segments in chromosomes 1, 8, 10, 11, and 14 of the ILs. Both shared and unique polymorphic SNP loci were detected throughout the entire genomes of the ILs, suggesting the successful transfer of common and novel introgression regions that are potentially associated with BSR resistance. Downy mildew (DM) disease screening and molecular tests revealed that a DM resistance gene, Pl17, derived from one of the inbred parent HA 458 was present in four ILs. Introgression germplasms possessing resistance to both Sclerotinia BSR and DM will extend the useful diversity of the primary gene pool in the fight against two destructive sunflower diseases.


Assuntos
Ascomicetos/patogenicidade , Resistência à Doença , Genótipo , Helianthus/genética , Cromossomos de Plantas/genética , Helianthus/imunologia , Helianthus/microbiologia , Polimorfismo Genético
7.
Nat Biotechnol ; 37(2): 139-143, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30718880

RESUMO

Disease resistance (R) genes from wild relatives could be used to engineer broad-spectrum resistance in domesticated crops. We combined association genetics with R gene enrichment sequencing (AgRenSeq) to exploit pan-genome variation in wild diploid wheat and rapidly clone four stem rust resistance genes. AgRenSeq enables R gene cloning in any crop that has a diverse germplasm panel.


Assuntos
Clonagem Molecular , Produtos Agrícolas/genética , Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/genética , Mapeamento Cromossômico , Estudos de Associação Genética , Variação Genética , Genômica , Genótipo , Modelos Genéticos , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Plântula , Triticum/genética
8.
J Integr Plant Biol ; 59(9): 669-679, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28636095

RESUMO

Hybrids between the indica and japonica subspecies of rice (Oryza sativa) are usually sterile, which hinders utilization of heterosis in the inter-subspecific hybrid breeding. The complex locus Sa comprises two adjacently located genes, SaF and SaM, which interact to cause abortion of pollen grains carrying the japonica allele in japonica-indica hybrids. Here we showed that silencing of SaF or SaM by RNA interference restored male fertility in indica-japonica hybrids with heterozygous Sa. We further used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based genome editing to knockout the SaF and SaM alleles, respectively, of an indica rice line to create hybrid-compatible lines. The resultant artificial neutral alleles did not affect pollen viability and other agricultural traits, but did break down the reproductive barrier in the hybrids. We found that some rice lines have natural neutral allele Sa-n, which was compatible with the typical japonica or indica Sa alleles in hybrids. Our results demonstrate that SaF and SaM are required for hybrid male sterility, but are not essential for pollen development. This study provides effective approaches for the generation of hybrid-compatible lines by knocking out the Sa locus or using the natural Sa-n allele to overcome hybrid male sterility in rice breeding. © 2017 The Authors. Bioelectromagnetics published by Wiley Periodicals, Inc.


Assuntos
Hibridização Genética , Oryza/fisiologia , Melhoramento Vegetal/métodos , Infertilidade das Plantas/genética , Sistemas CRISPR-Cas , Genes de Plantas , Interferência de RNA
9.
Theor Appl Genet ; 130(6): 1135-1154, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28286900

RESUMO

KEY MESSAGE: Markers linked to stem rust resistance gene Sr47 were physically mapped in three small Aegilops speltoides chromosomal bins. Five markers, including two PCR-based SNP markers, were validated for marker-assisted selection. In durum wheat (Triticum turgidum subsp. durum), the gene Sr47 derived from Aegilops speltoides conditions resistance to race TTKSK (Ug99) of the stem rust pathogen (Puccinia graminis f. sp. tritici). Sr47 is carried on small interstitial translocation chromosomes (Ti2BL-2SL-2BL·2BS) in which the Ae. speltoides chromosome 2S segments are divided into four bins in genetic stocks RWG35, RWG36, and RWG37. Our objective was to physically map molecular markers to bins and to determine if any of the molecular markers would be useful in marker-assisted selection (MAS). Durum cultivar Joppa was used as the recurrent parent to produce three BC2F2 populations. Each BC2F2 plant was genotyped with markers to detect the segment carrying Sr47, and stem rust testing of BC2F3 progeny with race TTKSK confirmed the genotyping. Forty-nine markers from published sources, four new SSR markers, and five new STARP (semi-thermal asymmetric reverse PCR) markers, were evaluated in BC2F2 populations for assignment of markers to bins. Sr47 was mapped to bin 3 along with 13 markers. No markers were assigned to bin 1; however, 7 and 13 markers were assigned to bins 2 and 4, respectively. Markers Xrwgs38a, Xmag1729, Xwmc41, Xtnac3119, Xrwgsnp1, and Xrwgsnp4 were found to be useful for MAS of Sr47. However, STARP markers Xrwgsnp1 and Xrwgsnp4 can be used in gel-free systems, and are the preferred markers for high-throughput MAS. The physical mapping data from this study will also be useful for pyramiding Sr47 with other Sr genes on chromosome 2B.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Marcadores Genéticos , Doenças das Plantas/genética , Triticum/genética , Basidiomycota , Mapeamento Cromossômico , DNA de Plantas/genética , Genótipo , Repetições de Microssatélites , Doenças das Plantas/microbiologia , Poaceae/genética , Polimorfismo de Nucleotídeo Único , Triticum/microbiologia
10.
Front Genet ; 7: 219, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28083014

RESUMO

Basal stalk rot (BSR), caused by Sclerotinia sclerotiorum, is a devastating disease in sunflower worldwide. The progress of breeding for Sclerotinia BSR resistance has been hampered due to the lack of effective sources of resistance for cultivated sunflower. Our objective was to transfer BSR resistance from wild annual Helianthus species into cultivated sunflower and identify the introgressed alien segments associated with BSR resistance using a genotyping-by-sequencing (GBS) approach. The initial crosses were made between the nuclear male sterile HA 89 with the BSR resistant plants selected from wild Helianthus argophyllus and H. petiolaris populations in 2009. The selected resistant F1 plants were backcrossed to HA 458 and HA 89, respectively. Early generation evaluations of BSR resistance were conducted in the greenhouse, while the BC2F3 and subsequent generations were evaluated in the inoculated field nurseries. Eight introgression lines; six from H. argophyllus (H.arg 1 to H.arg 6), and two from H. petiolaris (H.pet 1 and H.pet 2), were selected. These lines consistently showed high levels of BSR resistance across seven environments from 2012 to 2015 in North Dakota and Minnesota, USA. The mean BSR disease incidence (DI) for H.arg 1 to H.arg 6, H.pet 1, and H.pet 2 was 3.0, 3.2, 0.8, 7.2, 7.7, 1.9, 2.5, and 4.4%, compared to a mean DI of 36.1% for Cargill 270 (susceptible hybrid), 31.0% for HA 89 (recurrent parent), 19.5% for HA 441 (resistant inbred), and 11.6% for Croplan 305 (resistant hybrid). Genotyping of the highly BSR resistant introgression lines using GBS revealed the presence of the H. argophyllus segments in linkage groups (LGs) 3, 8, 9, 10, and 11 of the sunflower genome, and the H. petiolaris segments only in LG8. The shared polymorphic SNP loci in the introgression lines were detected in LGs 8, 9, 10, and 11, indicating the common introgression regions potentially associated with BSR resistance. Additionally, a downy mildew resistance gene, Pl17 , derived from one of the parents, HA 458, was integrated into five introgression lines. Germplasms combining resistance to Sclerotinia BSR and downy mildew represent a valuable genetic source for sunflower breeding to combat these two destructive diseases.

11.
New Phytol ; 208(3): 936-48, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26096631

RESUMO

Initiation of flowering, also called heading, in rice (Oryza sativa) is determined by the florigens encoded by Heading date 3a (Hd3a) and RICE FLOWERING LOCUS T1 (RFT1). Early heading date 1 (Ehd1) regulates Hd3a and RFT1. However, different rice varieties have diverged alleles of Ehd1 and Hd3a/RFT1 and their genetic interactions remain largely unclear. Here we generated three segregating populations for different combinations of diverged Ehd1 and Hd3a/RFT1 alleles, and analyzed their genetic interactions between these alleles. We demonstrated that, in an ehd1 mutant background, Hd3a was silenced, but RFT1 was expressed (although at lower levels than in plants with a functional Ehd1) under short-day (SD) and long-day (LD) conditions. We identified a nonfunctional RFT1 allele (rft1); the lines carrying homozygous ehd1 and Hd3a/rft1 failed to induce the floral transition under SD and LD conditions. Like Hd3a, RFT1 also interacted with 14-3-3 proteins, the florigen receptors, but a nonfunctional RFT1 with a crucial E105K mutation failed to interact with 14-3-3 proteins. Furthermore, analyses of sequence variation and geographic distribution suggested that functional RFT1 alleles were selected during rice adaptation to high-latitude regions. Our results demonstrate the important roles of RFT1 in rice flowering and regional adaptation.


Assuntos
Aclimatação/genética , Oryza/genética , Proteínas 14-3-3/metabolismo , Agricultura , Alelos , Sequência de Aminoácidos , Mapeamento Cromossômico , Genes de Plantas , Dados de Sequência Molecular , Oryza/metabolismo , Análise de Sequência de DNA
13.
Theor Appl Genet ; 122(6): 1223-31, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21258998

RESUMO

Blackleg resistant cultivars have been developed through conventional breeding methods and are successfully used globally to control this disease in canola production. To clone blackleg resistance genes and to understand the mechanism underlying the resistance, a blackleg resistant canola cultivar 'Surpass 400' was used to develop a gene mapping population. A previously reported high density genetic map was used to find a resistance gene region that corresponded to linkage group N10 in B. napus. Differential interactions between the resistant lines and a pathogen isolate were discovered with two resistance genes BLMR1 and BLMR2 identified through linkage analysis of five genome-specific molecular markers. BLMR1 provides resistance through the hypersensitive response that protects inoculated cotyledons from becoming infected, Unlike BLMR1, BLMR2 slows down the development of individual infection loci. BLMR1 and BLMR2 segregated independently in two large F(3)BC(2) populations. Fine mapping of BLMR1 was performed with 12 genome-specific molecular markers. The closest marker with a genetic distance of 0.13 cM to BLMR1 was identified, which lays a solid foundation for cloning BLMR1.


Assuntos
Ascomicetos/patogenicidade , Brassica napus/genética , Brassica napus/imunologia , Brassica napus/microbiologia , Mapeamento Cromossômico/métodos , Imunidade Inata/genética , Genes de Plantas , Ligação Genética , Marcadores Genéticos , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia
14.
Proc Natl Acad Sci U S A ; 105(48): 18871-6, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19033192

RESUMO

Sterility is common in hybrids between divergent populations, such as the indica and japonica subspecies of Asian cultivated rice (Oryza sativa). Although multiple loci for plant hybrid sterility have been identified, it remains unknown how alleles of the loci interact at the molecular level. Here we show that a locus for indica-japonica hybrid male sterility, Sa, comprises two adjacent genes, SaM and SaF, encoding a small ubiquitin-like modifier E3 ligase-like protein and an F-box protein, respectively. Most indica cultivars contain a haplotype SaM(+)SaF(+), whereas all japonica cultivars have SaM(-)SaF(-) that diverged by nucleotide variations in wild rice. Male semi-sterility in this heterozygous complex locus is caused by abortion of pollen carrying SaM(-). This allele-specific gamete elimination results from a selective interaction of SaF(+) with SaM(-), a truncated protein, but not with SaM(+) because of the presence of an inhibitory domain, although SaM(+) is required for this male sterility. Lack of any one of the three alleles in recombinant plants does not produce male sterility. We propose a two-gene/three-component interaction model for this hybrid male sterility system. The findings have implications for overcoming male sterility in inter-subspecific hybrid rice breeding.


Assuntos
Alelos , Quimera/genética , Oryza/genética , Infertilidade das Plantas/genética , Sequência de Aminoácidos , Cruzamento , Genes de Plantas , Genótipo , Haplótipos , Dados de Sequência Molecular , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/ultraestrutura , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido
15.
Plant Cell ; 18(3): 676-87, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16489123

RESUMO

Cytoplasmic male sterility (CMS) and nucleus-controlled fertility restoration are widespread plant reproductive features that provide useful tools to exploit heterosis in crops. However, the molecular mechanism underlying this kind of cytoplasmic-nuclear interaction remains unclear. Here, we show in rice (Oryza sativa) with Boro II cytoplasm that an abnormal mitochondrial open reading frame, orf79, is cotranscribed with a duplicated atp6 (B-atp6) gene and encodes a cytotoxic peptide. Expression of orf79 in CMS lines and transgenic rice plants caused gametophytic male sterility. Immunoblot analysis showed that the ORF79 protein accumulates specifically in microspores. Two fertility restorer genes, Rf1a and Rf1b, were identified at the classical locus Rf-1 as members of a multigene cluster that encode pentatricopeptide repeat proteins. RF1A and RF1B are both targeted to mitochondria and can restore male fertility by blocking ORF79 production via endonucleolytic cleavage (RF1A) or degradation (RF1B) of dicistronic B-atp6/orf79 mRNA. In the presence of both restorers, RF1A was epistatic over RF1B in the mRNA processing. We have also shown that RF1A plays an additional role in promoting the editing of atp6 mRNAs, independent of its cleavage function.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas Mitocondriais/fisiologia , Oryza/genética , Proteínas de Plantas/fisiologia , Interferência de RNA , RNA Mensageiro/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência de Bases , Sequência Consenso , Citoplasma/metabolismo , Epistasia Genética , Genes Mitocondriais , Genes de Plantas , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Fases de Leitura Aberta/fisiologia , Oryza/citologia , Oryza/fisiologia , Peptídeos/genética , Peptídeos/toxicidade , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ATPases Translocadoras de Prótons , Proteínas Recombinantes de Fusão/análise , Reprodução , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...