Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(19): 7590-7598, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37150968

RESUMO

The conventional V2O5-WO3/TiO2 catalyst suffers severely from arsenic poisoning, leading to a significant loss of catalytic activity. The doping of Al or Mo plays an important role in promoting the arsenic resistance on NH3 selective catalytic reduction (NH3-SCR), but their promotion mechanism remains in debate and has yet to be explored in multipollutant control (MPC) of NOx and chlorinated organics. Herein, our experimental characterizations and density functional theory (DFT) calculations confirmed that arsenic species preferentially adsorb on both Al and Mo to form arsenate, thereby avoiding bonding to the catalytically active V sites. More importantly, Al doping partially converted the polymeric vanadyl species into monomeric ones, thereby inhibiting the near-surface and bulk lattice oxygen mobility of the V2O5-WO3/TiO2 catalyst, while Mo doping resulted in vanadyl polymerization with an enriched V5+ chemical state and exhibited superior MPC activity and COx selectivity. Our work shows that antipoisoning catalysts can be designed with the combination of site protection and occurrence state modification of the active species.


Assuntos
Arsênio , Vanadatos , Polimerização , Titânio/química , Catálise , Amônia/química
2.
J Environ Sci (China) ; 127: 844-854, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522112

RESUMO

In the process of catalytic destruction of chlorinated volatile organic compounds (CVOCs), the catalyst is prone to chlorine poisoning and produce polychlorinated byproducts with high toxicity and persistence, bringing great risk to atmospheric environment and human health. To solve these problems, this work applied phosphate to modify K-OMS-2 catalysts. The physicochemical properties of catalysts were determined by using X-ray powder diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), hydrogen temperature programmed reduction (H2-TPR), pyridine adsorption Fourier-transform infrared (Py-IR) and water temperature programmed desorption (H2O-TPD), and chlorobenzene was selected as a model pollutant to explore the catalytic performance and byproduct inhibition function of phosphating. Experimental results revealed that 1 wt.% phosphate modification yielded the best catalytic activity for chlorobenzene destruction, with the 90% conversion (T90) at approximately 247°C. The phosphating significantly decreased the types and yields of polychlorinated byproducts in effluent. After phosphating, we observed significant hydroxyl groups on catalyst surface, and the active center was transformed into Mn(IV)-O…H, which promoted the formation of HCl, and enhanced the dechlorination process. Furthermore, the enriched Lewis acid sites by phosphating profoundly enhanced the deep oxidation ability of the catalyst, which promoted a rapid oxidation of reaction intermediates, so as to reduce byproducts generation. This study provided an effective strategy for inhibiting the toxic byproducts for the catalytic destruction of chlorinated organics.


Assuntos
Clorobenzenos , Fosfatos , Humanos , Catálise , Oxirredução , Clorobenzenos/química
3.
Environ Sci Technol ; 56(13): 9762-9772, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35734922

RESUMO

Ru-based catalysts have been extensively employed for the catalytic destruction of chlorinated volatile organic compounds (VOCs), but their versatility for other routine VOCs' destruction has been less explored. Herein, we show that Ru-decorated SnO2/CeO2 mixed oxides can sustain H2O and HCl poisonings and are endowed with extraordinary versatility for a wide range of VOCs' destruction. Selective adsorption of Ru on the cassiterite SnO2 and CeO2 nanorods through a Coulomb force can rationally tune the oxidation and dechlorination centers on decorated catalysts, where the epitaxial growth of RuOx on top of SnO2 is endowed with excellent dechlorination ability and that on CeO2 is functional as an oxidation center; the latter could also activate H2O to provide sufficient H protons for HCl formation. Our developed Ru/SnO2/CeO2 catalyst can steadily destruct mono-chlorobenzene, ortho-dichlorobenzene, trichloroethylene, dichloromethane, epichlorohydrin, N-hexane, ethyl acetate, toluene, and their mixtures at an optimum temperature of 300 °C, and its monolithic form is also functional at this temperature with few dioxins being detected in the off-gas. Our results imply that the Ru-decorated SnO2/CeO2 catalyst can meet the demands of regenerative catalytic oxidation for the treatment of a wide range of VOCs from industrial exhausts.


Assuntos
Óxidos , Compostos Orgânicos Voláteis , Adsorção , Catálise , Oxirredução
4.
Environ Sci Technol ; 55(13): 9317-9325, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34110820

RESUMO

Municipal solid waste incineration and the iron and steel smelting industry can simultaneously discharge NOx and chlorinated organics, particularly polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). Synergistic control of these pollutants has been considered among the most cost-effective methods. This work combined experimental and computational methods to investigate the reaction characteristics of a catalytically synergistic approach and gives the first insight into the effect of arsenic (As) on the multipollutant conversion efficiency, synergistic reaction mechanism, and toxic byproduct distribution over a commercial V2O5-WO3/TiO2 catalyst. The loaded As2O3 species were shown to distinctly decrease the formation energy of an oxygen vacancy at the V-O-V site, which likely contributed to the extensive formation of more toxic polychlorinated byproducts in the synergistic reaction. The As2O5 species strongly attacked neighboring V═O sites forming the As-O-V bands. Such an interaction deactivated the deNOx reaction, but led to excessive NO being oxidized into NO2 that greatly promoted the V5+-V4+ redox cycle and in turn facilitated chlorobenzene (CB) oxidation. Subsequent density functional theory (DFT) calculation further reveals that both the As2O3 and As2O5 loadings can facilitate H2O adsorption on the V2O5-WO3/TiO2 catalyst, leading to competitive adsorption between H2O and CB, and thereby deactivate the CB oxidation with water stream.


Assuntos
Arsênio , Dibenzodioxinas Policloradas , Catálise , Dibenzofuranos , Dibenzofuranos Policlorados , Incineração , Titânio
5.
J Colloid Interface Sci ; 559: 96-104, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31622818

RESUMO

Mn-based catalysts are extensively used; herein, the poisoning mechanism of Pb2+ and SO2 on the γ-MnO2 catalyst during the combustion of chlorobenzene (CB) was studied. The oxidizability/reducibility, surface acidity and water activation property of the Pb/SO42- modified γ-MnO2 were analyzed by using XPS, H2-TPR/O2-TPD, NH3-TPD/Pyridine-IR and H2O-TPD. Catalytic performance and byproduct selectivity towards CB combustion were explored, indicating that Pb2+ and SO2 both impacted CB conversion and CO2 selectivity as indicated by the loss of oxidation properties and surface acidity. Analysis of the byproducts showed that Pb2+ and SO2 induced the formation of more toxic polychlorinated byproducts, thereby introducing new secondary environmental pollution risks.

6.
Environ Sci Technol ; 53(21): 12697-12705, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31577126

RESUMO

The development of efficient technologies to prevent the emission of hazardous chlorinated organics from industrial sources without forming harmful byproducts, such as dioxins, is a major challenge in environmental chemistry. Herein, we report a new hydrolytic destruction route for efficient chlorinated organics elimination and demonstrate that phosphoric acid-modified CeO2 (HP-CeO2) can decompose chlorobenzene (CB) without forming polychlorinated congeners under the industry-relevant reaction conditions. The active site and reaction pathway were investigated, and it was found that surface phosphate groups initially react with CB and water to form phenol and HCl, followed by deep oxidation. The high on-stream stability of the catalyst was due to the efficient generation of HCl, which removes Cl from the catalyst surface and ensures O2 activation and therefore deep oxidation of the hydrocarbons. Subsequent density functional theory calculations revealed a distinctly decreased formation energy of an oxygen vacancy at nearest (VO-1) and next-nearest (VO-2) surface sites to the bonded phosphate groups, which likely contributes to the high rate of oxidation observed over the catalyst. Significantly, no dioxins, which are frequently formed in the conventional oxidation route, were observed. This work not only reports an efficient route and corresponding phosphate active site for chlorinated organics elimination but also illustrates that the rational design of the reaction route can solve some of the most important challenges in environmental catalysis.


Assuntos
Fosfatos , Ácidos Fosfóricos , Catálise , Hidrólise , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...