Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(6)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35336565

RESUMO

Ultrasound-based haptic feedback is a potential technology for human-computer interaction (HCI) with the advantages of a low cost, low power consumption and a controlled force. In this paper, phase optimization for multipoint haptic feedback based on an ultrasound array was investigated, and the corresponding experimental verification is provided. A mathematical model of acoustic pressure was established for the ultrasound array, and then a phase-optimization model for an ultrasound transducer was constructed. We propose a pseudo-inverse (PINV) algorithm to accurately determine the phase contribution of each transducer in the ultrasound array. By controlling the phase difference of the ultrasound array, the multipoint focusing forces were formed, leading to various shapes such as geometries and letters, which can be visualized. Because the unconstrained PINV solution results in unequal amplitudes for each transducer, a weighted amplitude iterative optimization was deployed to further optimize the phase solution, by which the uniform amplitude distributions of each transducer were obtained. For the purpose of experimental verification, a platform of ultrasound haptic feedback consisting of a Field Programmable Gate Array (FPGA), an electrical circuit and an ultrasound transducer array was prototyped. The haptic performances of a single point, multiple points and dynamic trajectory were verified by controlling the ultrasound force exerted on the liquid surface. The experimental results demonstrate that the proposed phase-optimization model and theoretical results are effective and feasible, and the acoustic pressure distribution is consistent with the simulation results.


Assuntos
Tecnologia Háptica , Transdutores , Algoritmos , Retroalimentação , Humanos , Ultrassonografia/métodos
2.
Micromachines (Basel) ; 10(12)2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31817860

RESUMO

The piezoelectric actuator (PA) is one of the most commonly used actuators in a micro-positioning stage. But its hysteresis non-linearity can cause error in the piezo-actuated stage. A modified Bouc-Wen model is presented in this paper to describe the hysteresis non-linearity of the piezo-actuated stage. This model can be divided into two categories according to the input frequency: rate-independent type and rate-dependent type. A particle swarm optimization method (PSO) is employed to identify these parameters of the Bouc-Wen hysteresis model. An inverse model feedforward compensator is established based on the modified Bouc-Wen model. The fuzzy proportional-integral-derivative (PID) controller combined with the feedforward compensator is implemented to the piezo-actuated stage. The experimental results indicate that the proposed control strategy can compensate for the hysteresis phenomenon.

3.
Sensors (Basel) ; 19(7)2019 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-30959871

RESUMO

Grouted splice sleeve (GSS) connectors are mainly used in precast concrete structures. However, errors in manual operation during construction cause grouted defects in the GSS connector, which can lead to a negative effect on the overall mechanical properties of the structures. Owing to the complex structure of precast concrete members with a GSS connector, it is difficult to detect grouted defects effectively using traditional ultrasonic parameters. In this paper, a wavelet packet analysis algorithm was developed to effectively detect grouted defects using the ultrasonic method, and a verified experiment was carried out. Laboratory detection was performed on the concrete specimens with a GSS connector before grouting, in which the grouted defects were mimicked with five sizes in five GSS connectors of each specimen group. A simple and convenient ultrasonic detection system was developed, and the specimens were detected. According to the proposed grouted defect index, the results demonstrated that when the grouted defects reached certain sizes, the proposed method could detect the grouted defects effectively. The proposed method is effective and easy to implement at a construction site with simple instruments, and so provides an innovative method for grouted defects detection of precast concrete members.

4.
Sensors (Basel) ; 19(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901971

RESUMO

Ultrasonic transducer is a piezoelectric actuator that converts AC electrical energy into ultrasonic mechanical vibration to accelerate the material removal rate of workpiece in rotary ultrasonic machining (RUM). In this study, an impedance model of the ultrasonic transducer is established by the electromechanical equivalent approach. The impedance model not only facilitates the structure design of the ultrasonic transducer, but also predicts the effects of different mechanical structural dimensions on the impedance characteristics of the ultrasonic transducer. Moreover, the effects of extension length of the machining tool and the tightening torque of the clamping nut on the impedance characteristics of the ultrasonic transducer are investigated. Finally, through experimental analysis, the impedance transfer function with external force is established to analyze the dynamic characteristics of machining process.

5.
Sensors (Basel) ; 19(3)2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30691035

RESUMO

Structural health monitoring technologies have provided extensive methods to sense the stress of steel structures. However, monitored stress is a relative value rather than an absolute value in the structure's current state. Among all the stress measurement methods, ultrasonic methods have shown great promise. The shear-wave amplitude spectrum and phase spectrum contain stress information along the propagation path. In this study, the influence of uniaxial stress on the amplitude and phase spectra of a shear wave propagating in steel members was investigated. Furthermore, the shear-wave amplitude spectrum and phase spectrum were compared in terms of characteristic frequency (CF) collection, parametric calibration, and absolute stress measurement principles. Specifically, the theoretical expressions of the shear-wave amplitude and phase spectra were derived. Three steel members were used to investigate the effect of the uniaxial stress on the shear-wave amplitude and phase spectra. CFs were extracted and used to calibrate the parameters in the stress measurement formula. A linear relationship was established between the inverse of the CF and its corresponding stress value. The test results show that both the shear-wave amplitude and phase spectra can be used to evaluate uniaxial stress in structural steel members.

6.
Sensors (Basel) ; 18(11)2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30380638

RESUMO

This paper presents a modeling approach to feature classification and environment mapping for indoor mobile robotics via a rotary ultrasonic array and fuzzy modeling. To compensate for the distance error detected by the ultrasonic sensor, a novel feature extraction approach termed "minimum distance of point" (MDP) is proposed to determine the accurate distance and location of target objects. A fuzzy model is established to recognize and classify the features of objects such as flat surfaces, corner, and cylinder. An environmental map is constructed for automated robot navigation based on this fuzzy classification, combined with a cluster algorithm and least-squares fitting. Firstly, the platform of the rotary ultrasonic array is established by using four low-cost ultrasonic sensors and a motor. Fundamental measurements, such as the distance of objects at different rotary angles and with different object materials, are carried out. Secondly, the MDP feature extraction algorithm is proposed to extract precise object locations. Compared with the conventional range of constant distance (RCD) method, the MDP method can compensate for errors in feature location and feature matching. With the data clustering algorithm, a range of ultrasonic distances is attained and used as the input dataset. The fuzzy classification model-including rules regarding data fuzzification, reasoning, and defuzzification-is established to effectively recognize and classify the object feature types. Finally, accurate environment mapping of a service robot, based on MDP and fuzzy modeling of the measurements from the ultrasonic array, is demonstrated. Experimentally, our present approach can realize environment mapping for mobile robotics with the advantages of acceptable accuracy and low cost.

7.
Rev Sci Instrum ; 88(7): 075003, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28764489

RESUMO

Piezoelectric actuators invariably exhibit hysteresis nonlinearities that tend to become significant under the open-loop condition and could cause oscillations and errors in nanometer-positioning tasks. Chaotic map modified particle swarm optimization (MPSO) is proposed and implemented to identify the Prandtl-Ishlinskii model for piezoelectric actuators. Hysteresis compensation is attained through application of an inverse Prandtl-Ishlinskii model, in which the parameters are formulated based on the original model with chaotic map MPSO. To strengthen the diversity and improve the searching ergodicity of the swarm, an initial method of adaptive inertia weight based on a chaotic map is proposed. To compare and prove that the swarm's convergence occurs before stochastic initialization and to attain an optimal particle swarm optimization algorithm, the parameters of a proportional-integral-derivative controller are searched using self-tuning, and the simulated results are used to verify the search effectiveness of chaotic map MPSO. The results show that chaotic map MPSO is superior to its competitors for identifying the Prandtl-Ishlinskii model and that the inverse Prandtl-Ishlinskii model can provide hysteresis compensation under different conditions in a simple and effective manner.

8.
Rev Sci Instrum ; 87(2): 025115, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26931899

RESUMO

This paper presents the control performance of a linear motion stage driven by Voice Coil Motor (VCM). Unlike the conventional VCM, the stator of this VCM is regulated, which means it can be adjusted as a floating-stator or fixed-stator. A Multi-Mode Sliding Mode Control (MMSMC), including a conventional Sliding Mode Control (SMC) and an Integral Sliding Mode Control (ISMC), is designed to control the linear motion stage. The control is switched between SMC and IMSC based on the error threshold. To eliminate the chattering, a smooth function is adopted instead of a signum function. The experimental results with the floating stator show that the positioning accuracy and tracking performance of the linear motion stage are improved with the MMSMC approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...