Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 265: 116106, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38169271

RESUMO

Clinical researches have shown that epidermal growth factor receptor (EGFR) is a key target for treatment of non-small cell lung cancer (NSCLC). Many EGFR inhibitors were successfully developed as ani-tumor drugs to treat NSCLC patients. Unfortunately, drug resistances were found in clinic. To overcome C797S mutation in EGFR, a novel series of 4-arylamine substituted pyrimidine derivatives were designed and synthesized under the principle of structure-based drug design. Interestingly, compounds 6e and 9i demonstrated the best anti-proliferative activity against A549, NCI-H1975, and HCC827 cells. In particular, the IC50 values against HCC827 cells reached to 24.6 nM and 31.6 nM, which were much lower than human normal cells 2BS and LO2. Furthermore, compounds 6e and 9i showed extraordinary activity against EGFR19del/T790M/C797S (IC50 = 16.06 nM and 37.95 nM) and EGFRL858R/T790M/C797S (IC50 = 11.81 nM and 26.68 nM), which were potent than Osimertinib (IC50 = 52.28 nM and 157.60 nM). Further studies have shown that compounds 6e and 9i could pertain inhibition of HCC827 colony formation, and arrest HCC827 cells at G2/M phase. Moreover, the most promising compound 6e could inhibit the migration of HCC827 cells, induce HCC827 cells apoptosis, and significantly inhibit the phosphorylation of EGFR, AKT and Erk1/2. In vivo xenograft mouse model with HCC827 cells, compound 6e resulted in remarkable tumor regression without obvious toxicity. In addition, molecular docking studies suggested that compound 6e could firmly combine with T790M-mutant, T790 M/C797S-mutant, and L858R/T790 M/C797S-mutant EGFR kinases as ATP-competitive inhibitor.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares/patologia , Simulação de Acoplamento Molecular , Mutação , Inibidores de Proteínas Quinases , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Aminas/química
2.
Bioorg Chem ; 140: 106792, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37633129

RESUMO

A novel series of 4-arylamino-pyrimidine derivatives were designed and synthesized as focal adhesion kinase (FAK) inhibitors under the strategy of structure-based drug design. Most compounds performed excellent anti-proliferative activity against U87-MG cells. Especially, compounds 8d and 9b revealed the highest activity with IC50 values of 0.975 µM and 1.033 µM, which was much potent than the positive control TAE-226 (IC50 = 2.659 µM). On the other hand, the total 27 compounds exhibited low inhibition against human normal 2BS cells. Moreover, compounds 8d and 9b showed outstanding activity against FAK with IC50 values of 0.2438 nM and 0.2691 nM, which was very close to TAE-226 (IC50 = 0.1390 nM). Further studies proved that compounds 8d and 9b could induce U87-MG cell early apoptosis and arrest the cell at G2/M phase. The action mechanism indicated that they could significantly inhibit U87-MG cell clone formation, cell migration, and FAK phosphorylation. Molecular docking and molecular dynamics simulation investigations suggested that compounds 8d and 9b could firmly occupy the ATP binding site of FAK. These findings supported the further researches of compounds 8d and 9b as FAK inhibitors for antitumor drug discovery.


Assuntos
Anti-Hipertensivos , Apoptose , Humanos , Proteína-Tirosina Quinases de Adesão Focal , Simulação de Acoplamento Molecular , Fosforilação
3.
RSC Adv ; 12(39): 25633-25638, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199305

RESUMO

Polysubstituted phenylisoxazoles were designed and synthesized to discover new antibacterial agents via [3 + 2] cycloaddition. Thirty-five compounds with a phenylisoxazole scaffold were characterized by NMR, HRMS, and X-ray techniques. After being evaluated against Xanthomonas oryzae (Xoo), Pseudomonas syringae (Psa), and Xanthomonas axonopodis (Xac), 4-nitro-3-phenylisoxazole derivatives were found to better antibacterial activities. Further studies have shown that the EC50 values of these compounds were much better than that of the positive control, bismerthiazol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...