Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(42): 23352-23360, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37824718

RESUMO

Soft porous crystals combine flexibility and porosity, allowing them to respond structurally to external physical and chemical environments. However, striking the right balance between flexibility and sufficient rigidity for porosity is challenging, particularly for molecular crystals formed by using weak intermolecular interactions. Here, we report a flexible oxygen-bridged prismatic organic cage molecule, Cage-6-COOH, which has three pillars that exhibit "hinge-like" rotational motion in the solid state. Cage-6-COOH can form a range of hydrogen-bonded organic frameworks (HOFs) where the "hinge" can accommodate a remarkable 67° dihedral angle range between neighboring units. This stems both from flexibility in the noncovalent hydrogen-bonding motifs in the HOFs and the molecular flexibility in the oxygen-linked cage hinge itself. The range of structures for Cage-6-COOH includes two topologically complex interpenetrated HOFs, CageHOF-2α and CageHOF-2ß. CageHOF-2α is nonporous, while CageHOF-2ß has permanent porosity and a surface area of 458 m2 g-1. The flexibility of Cage-6-COOH allows this molecule to rapidly transform from a low-crystallinity solid into the two crystalline interpenetrated HOFs, CageHOF-2α and CageHOF-2ß, under mild conditions simply by using acetonitrile or ethanol vapor, respectively. This self-healing behavior was selective, with the CageHOF-2ß structure exhibiting structural memory behavior.

2.
Organometallics ; 41(23): 3557-3567, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36533115

RESUMO

Straightforward procedures for the generation of rhodium(I) κCl-chlorocarbon complexes of the form [Rh(PONOP-tBu)(κ Cl-ClR)][BArF 4] [R = CH2Cl, A; Ph, 1; Cy, 2; tBu, 3; PONOP-tBu = 2,6-bis(di-tert-butylphosphinito)pyridine; ArF = 3,5-bis(trifluoromethyl)phenyl] in solution are described, enabling isolation of analytically pure A and crystallographic characterization of the new complexes 1 and 2. Complex 1 was found to be stable at ambient temperature, but prolonged heating in chlorobenzene at 125 °C resulted in formation of [Rh(PONOP-tBu)(Ph)Cl][BArF 4] 4 with experimental and literature evidence pointing toward a concerted C(sp2)-Cl bond oxidative addition mechanism. C(sp3)-Cl bond activation of dichloromethane, chlorocyclohexane, and 2-chloro-2-methylpropane by the rhodium(I) pincer occurred under considerably milder conditions, and radical mechanisms that commence with chloride atom abstraction and involve generation of the rhodium(II) metalloradical [Rh(PONOP-tBu)Cl][BArF 4] 6 are instead proposed. For dichloromethane, [Rh(PONOP-tBu)(CH2Cl)Cl][BArF 4] 5 was formed in the dark, but facile photo-induced reductive elimination occurred when exposed to light. Net dehydrochlorination affording [Rh(PONOP-tBu)(H)Cl][BArF 4] 7 and an alkene byproduct resulted for chlorocyclohexane and 2-chloro-2-methylpropane, consistent with hydrogen atom abstraction from the corresponding alkyl radicals by 6. This suggestion is supported by dynamic hydrogen atom transfer between 6 and 7 on the 1H NMR time scale at 298 K in the presence of TEMPO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...