Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 14: 1168150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229195

RESUMO

Introduction: Genome-wide association studies (GWAS) have identified genetic markers for cattle production and reproduction traits. Several publications have reported Single Nucleotide Polymorphisms (SNPs) for carcass-related traits in cattle, but these studies were rarely conducted in pasture-finished beef cattle. Hawai'i, however, has a diverse climate, and 100% of its beef cattle are pasture-fed. Methods: Blood samples were collected from 400 cattle raised in Hawai'i islands at the commercial harvest facility. Genomic DNA was isolated, and 352 high-quality samples were genotyped using the Neogen GGP Bovine 100 K BeadChip. SNPs that did not meet the quality control standards were removed using PLINK 1.9, and 85 k high-quality SNPs from 351 cattle were used for association mapping with carcass weight using GAPIT (Version 3.0) in R 4.2. Four models were used for the GWAS analysis: General Linear Model (GLM), the Mixed Linear Model (MLM), the Fixed and Random Model Circulating Probability Unification (FarmCPU), the Bayesian-Information and Linkage-Disequilibrium Iteratively Nested Keyway (BLINK). Results and Discussion: Our results indicated that the two multi-locus models, FarmCPU and BLINK, outperformed single-locus models, GLM and MLM, in beef herds in this study. Specifically, five significant SNPs were identified using FarmCPU, while BLINK and GLM each identified the other three. Also, three of these eleven SNPs ("BTA-40510-no-rs", "BovineHD1400006853", and "BovineHD2100020346") were shared by multiple models. The significant SNPs were mapped to genes such as EIF5, RGS20, TCEA1, LYPLA1, and MRPL15, which were previously reported to be associated with carcass-related traits, growth, and feed intake in several tropical cattle breeds. This confirms that the genes identified in this study could be candidate genes for carcass weight in pasture-fed beef cattle and can be selected for further breeding programs to improve the carcass yield and productivity of pasture-finished beef cattle in Hawai'i and beyond.

2.
Transl Anim Sci ; 6(2): txac064, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35755135

RESUMO

Proper knowledge and understanding of climatic variability across different seasons are important in farm management. To learn more about the potential effects of climate change on dairying in Hawaii, we conducted a study on site-specific climate characterization using several variables including rainfall, wind speed (WS), solar radiation, and temperature, at two dairy farms located on Hawai`i Island, Hawai`i, in Ookala named "OK DAIRY" and in Upolu Point named "UP DAIRY." Temperature-humidity index (THI) and WS variations in the hottest four months (June to September) were analyzed to determine when critical thresholds that affect animal health are exceeded. Rainfall data were used to estimate the capacity of forage production in 6-mo wet (November to April) and dry (May to October) seasons. Future projections of temperature and rainfall were assessed using mid- and end-century gridded data products for low (RCP 4.5) and high emissions (RCP 8.5) scenarios. Our results showed that the "OK DAIRY" site received higher rainfall than the "UP DAIRY" site, favoring grass growth and forage availability. In addition, the "UP DAIRY" site was more stressful for animals during the summer (THI 69 to 73) than the "OK DAIRY" site (THI 67 to 70) as the THI exceeded the critical threshold of 68, which is conducive for high-lactating cattle. On the "UP DAIRY" site, the THI did not drop below 68 during the summer nights, which created fewer opportunities for cattle to recover from heat stress. Future projections indicated that air temperature would increase 1.3 to 1.8 °C by mid-century and 1.6 to 3.2 °C by the end-century at both farms, and rainfall will increase at the "OK DAIRY" site and decrease at the "UP DAIRY" site by the end-century. The agriculture and livestock industries, particularly the dairy and beef subsectors in Hawai`i, are vulnerable to climate changes as higher temperatures and less rainfall will have adverse effects on cattle. The findings in this study demonstrated how both observed and projected changes in climate support the development of long-term strategies for breeding and holistic livestock management practices to adapt to changing climate conditions.

3.
Sci Data ; 5: 180012, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29437162

RESUMO

Long-term, accurate observations of atmospheric phenomena are essential for a myriad of applications, including historic and future climate assessments, resource management, and infrastructure planning. In Hawai'i, climate data are available from individual researchers, local, State, and Federal agencies, and from large electronic repositories such as the National Centers for Environmental Information (NCEI). Researchers attempting to make use of available data are faced with a series of challenges that include: (1) identifying potential data sources; (2) acquiring data; (3) establishing data quality assurance and quality control (QA/QC) protocols; and (4) implementing robust gap filling techniques. This paper addresses these challenges by providing: (1) a summary of the available climate data in Hawai'i including a detailed description of the various meteorological observation networks and data accessibility, and (2) a quality controlled meteorological dataset across the Hawaiian Islands for the 25-year period 1990-2014. The dataset draws on observations from 471 climate stations and includes rainfall, maximum and minimum surface air temperature, relative humidity, wind speed, downward shortwave and longwave radiation data.

5.
Tree Physiol ; 34(7): 766-77, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24990865

RESUMO

The goal of this study was to determine the effects of atmospheric demand on both plant water relations and daily whole-tree water balance across the upper limit of a cloud forest at the mean base height of the trade wind inversion in the tropical trade wind belt. We measured the microclimate and water relations (sap flow, water potential, stomatal conductance, pressure-volume relations) of Metrosideros polymorpha Gaudich. var. polymorpha in three habitats bracketing the cloud forest's upper limit in Hawai'i to understand the role of water relations in determining ecotone position. The subalpine shrubland site, located 100 m above the cloud forest boundary, had the highest vapor pressure deficit, the least amount of rainfall and the highest levels of nighttime transpiration (EN) of all three sites. In the shrubland site, on average, 29% of daily whole-tree transpiration occurred at night, while on the driest day of the study 50% of total daily transpiration occurred at night. While EN occurred in the cloud forest habitat, the proportion of total daily transpiration that occurred at night was much lower (4%). The average leaf water potential (Ψleaf) was above the water potential at the turgor loss point (ΨTLP) on both sides of the ecotone due to strong stomatal regulation. While stomatal closure maintained a high Ψleaf, the minimum leaf water potential (Ψleafmin) was close to ΨTLP, indicating that drier conditions may cause drought stress in these habitats and may be an important driver of current landscape patterns in stand density.


Assuntos
Florestas , Microclima , Transpiração Vegetal , Árvores/fisiologia , Água/metabolismo , Altitude , Secas , Havaí
6.
Oecologia ; 175(1): 273-84, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24477832

RESUMO

Growing evidence suggests short-duration climate events may drive community structure and composition more directly than long-term climate means, particularly at ecotones where taxa are close to their physiological limits. Here we use an empirical habitat model to evaluate the role of microclimate during a strong El Niño in structuring a tropical montane cloud forest's upper limit and composition in Hawai'i. We interpolate climate surfaces, derived from a high-density network of climate stations, to permanent vegetation plots. Climatic predictor variables include (1) total rainfall, (2) mean relative humidity, and (3) mean temperature representing non-El Niño periods and a strong El Niño drought. Habitat models explained species composition within the cloud forest with non-El Niño rainfall; however, the ecotone at the cloud forest's upper limit was modeled with relative humidity during a strong El Niño drought and secondarily with non-El Niño rainfall. This forest ecotone may be particularly responsive to strong, short-duration climate variability because taxa here, particularly the isohydric dominant Metrosideros polymorpha, are near their physiological limits. Overall, this study demonstrates moisture's overarching influence on a tropical montane ecosystem, and suggests that short-term climate events affecting moisture status are particularly relevant at tropical ecotones. This study further suggests that predicting the consequences of climate change here, and perhaps in other tropical montane settings, will rely on the skill and certainty around future climate models of regional rainfall, relative humidity, and El Niño.


Assuntos
Ecossistema , El Niño Oscilação Sul , Microclima , Árvores/fisiologia , Secas , Havaí , Umidade , Modelos Teóricos , Chuva , Temperatura
7.
Nature ; 502(7470): 183-7, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24108050

RESUMO

Ecological and societal disruptions by modern climate change are critically determined by the time frame over which climates shift beyond historical analogues. Here we present a new index of the year when the projected mean climate of a given location moves to a state continuously outside the bounds of historical variability under alternative greenhouse gas emissions scenarios. Using 1860 to 2005 as the historical period, this index has a global mean of 2069 (±18 years s.d.) for near-surface air temperature under an emissions stabilization scenario and 2047 (±14 years s.d.) under a 'business-as-usual' scenario. Unprecedented climates will occur earliest in the tropics and among low-income countries, highlighting the vulnerability of global biodiversity and the limited governmental capacity to respond to the impacts of climate change. Our findings shed light on the urgency of mitigating greenhouse gas emissions if climates potentially harmful to biodiversity and society are to be prevented.


Assuntos
Simulação por Computador , Aquecimento Global , Animais , Biodiversidade , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...