Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 629(8013): 824-829, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720081

RESUMO

Enzymes play an increasingly important role in improving the benignity and efficiency of chemical production, yet the diversity of their applications lags heavily behind chemical catalysts as a result of the relatively narrow range of reaction mechanisms of enzymes. The creation of enzymes containing non-biological functionalities facilitates reaction mechanisms outside nature's canon and paves the way towards fully programmable biocatalysis1-3. Here we present a completely genetically encoded boronic-acid-containing designer enzyme with organocatalytic reactivity not achievable with natural or engineered biocatalysts4,5. This boron enzyme catalyses the kinetic resolution of hydroxyketones by oxime formation, in which crucial interactions with the protein scaffold assist in the catalysis. A directed evolution campaign led to a variant with natural-enzyme-like enantioselectivities for several different substrates. The unique activation mode of the boron enzyme was confirmed using X-ray crystallography, high-resolution mass spectrometry (HRMS) and 11B NMR spectroscopy. Our study demonstrates that genetic-code expansion can be used to create evolvable enantioselective enzymes that rely on xenobiotic catalytic moieties such as boronic acids and access reaction mechanisms not reachable through catalytic promiscuity of natural or engineered enzymes.


Assuntos
Biocatálise , Boro , Modelos Moleculares , Cristalografia por Raios X , Estereoisomerismo , Especificidade por Substrato , Boro/química , Boro/metabolismo , Cinética , Ácidos Borônicos/química , Ácidos Borônicos/metabolismo , Oximas/química , Oximas/metabolismo , Enzimas/química , Enzimas/metabolismo , Enzimas/genética , Evolução Molecular Direcionada , Cetonas/química , Cetonas/metabolismo
2.
Ecotoxicol Environ Saf ; 225: 112768, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34530265

RESUMO

Stable isotope labeling of pollutants is a valuable tool to investigate their environmental transport and degradation. For the globally most frequently used herbicide glyphosate, such studies have, so far, been hampered by the absence of an analytical standard for its labeled metabolite AMPA-15N, which is formed during the degradation of all commercially available glyphosate isotopologues. Without such a standard, detection and quantitation of AMPA-15N, e.g. with LC-MS/MS, is not possible. Therefore, a synthetic pathway to AMPA-15N from benzamide-15N via the hemiaminal was developed. AMPA-15N was obtained in sufficient yield and purity to be used as a standard compound for LC-MS/MS analysis. Suitable MS-detection settings as well as a calibration using the internal standard (IS) approach were established for Fmoc-derivatized AMPA-15N. The use of different AMPA isotopologues as IS was complicated by the parallel formation of [M+H]+ and [M]+• AMPA-Fmoc precursor ions in ESI-positive mode, causing signal interferences between analyte and IS. We recommend the use of either AMPA-13C-15N, AMPA-13C-15N-D2 or a glyphosate isotopologue as IS, as they do not affect the linearity of the calibration curve. As a proof of concept, the developed analysis procedure for AMPA-15N was used to refine the results from a field lysimeter experiment investigating leaching and degradation of glyphosate-2-13C-15N. The newly enabled quantitation of AMPA-15N in soil extracts showed that similar amounts (0.05 - 0.22 mg·kg-1) of the parent herbicide glyphosate and its primary metabolite AMPA persisted in the topsoil over the study period of one year, while vertical transport through the soil column did not occur for either of the compounds. The herein developed analysis concepts will facilitate future design and execution of experiments on the environmental fate of the herbicide glyphosate.


Assuntos
Herbicidas , Espectrometria de Massas em Tandem , Cromatografia Líquida , Glicina/análogos & derivados , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Glifosato
3.
ChemSusChem ; 13(7): 1825-1833, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-31999074

RESUMO

The first plasma-assisted immobilization of an organocatalyst, namely a bifunctional phosphonium salt in an amorphous hydrogenated carbon coating, is reported. This method makes the requirement for prefunctionalized supports redundant. The immobilized catalyst was characterized by solid-state 13 C and 31 P NMR spectroscopy, SEM, and energy-dispersive X-ray spectroscopy. The immobilized catalyst (1 mol %) was employed in the synthesis of cyclic carbonates from epoxides and CO2 . Notably, the efficiency of the plasma-treated catalyst on SiO2 was higher than those of the SiO2 support impregnated with the catalyst and even the homogeneous counterpart. After optimization of the reaction conditions, 13 terminal and four internal epoxides were converted with CO2 to the respective cyclic carbonates in yields of up to 99 %. Furthermore, the possibility to recycle the immobilized catalyst was evaluated. Even though the catalyst could be reused, the yields gradually decreased from the third run. However, this is the first example of the recycling of a plasma-immobilized catalyst, which opens new possibilities in the recovery and reuse of catalysts.

4.
Angew Chem Int Ed Engl ; 59(7): 2760-2763, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31793147

RESUMO

The carbon-carbon double bond of unsaturated carbonyl compounds was readily reduced by using a phosphetane oxide catalyst in the presence of a simple organosilane as the terminal reductant and water as the hydrogen source. Quantitative hydrogenation was observed when 1.0 mol % of a methyl-substituted phosphetane oxide was employed as the catalyst. The procedure is highly selective towards activated double bonds, tolerating a variety of functional groups that are usually prone to reduction. In total, 25 alkenes and two alkynes were hydrogenated to the corresponding alkanes in excellent yields of up to 99 %. Notably, less active poly(methylhydrosiloxane) could also be utilized as the terminal reductant. Mechanistic investigations revealed the phosphane as the catalyst resting state and a protonation/deprotonation sequence as the crucial step in the catalytic cycle.

5.
Science ; 365(6456): 866-867, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31467210
6.
J Org Chem ; 84(12): 7863-7870, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31135155

RESUMO

A catalytic system for the chlorination of alcohols under Appel conditions was developed. Benzotrichloride is used as a cheap and readily available chlorinating agent in combination with trioctylphosphane as the catalyst and phenylsilane as the terminal reductant. The reaction has several advantages over other variants of the Appel reaction, e.g., no additional solvent is required and the phosphane reagent is used only in catalytic amounts. In total, 27 different primary, secondary, and tertiary alkyl chlorides were synthesized in yields up to 95%. Under optimized conditions, it was also possible to convert epoxides and an oxetane to the dichlorinated products.

7.
J Org Chem ; 84(3): 1320-1329, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30557512

RESUMO

A straightforward two-step synthesis of benzoxepinones was developed via base-free phosphane-catalyzed Wittig reaction. 3-Methyl-1-phenyl-2-phospholene 1-oxide was used as a precatalyst and trimethoxysilane as a reducing agent. Additionally benzoic acid is employed as a catalyst to facilitate the reduction of the phosphane oxide. Mechanistic investigation revealed the formation of a coumarin as a side product, which was identified by 2D NMR experiments. First results of metabolic activity tests on the prepared benzoxepinones are reported.

8.
Top Curr Chem (Cham) ; 375(3): 50, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28439724

RESUMO

The use of CO2 as a C1 building block will be of essential importance in the future. In this context the synthesis of cyclic carbonates from epoxides and CO2 gained great attention recently. These products are valuable compounds in a variety of chemical fields. The development of new catalysts and catalytic systems for this atom-economic, scalable, and industrially relevant reaction is a highly active research field. Over the past 17 years great advances have been made in this area of research. This chapter covers the survey of the important known classes of homogeneous catalysts for the addition of CO2 to epoxides. Besides pioneering work, recent developments and procedures that allow this transformation under mild reaction conditions (reaction temperatures of ≤100 °C and/or CO2 pressures of 0.1 MPa) are especially emphasized.


Assuntos
Dióxido de Carbono/química , Carbonatos/síntese química , Compostos de Epóxi/química , Carbonatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...