Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Food Res Int ; 184: 114276, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609208

RESUMO

Inulin, a polysaccharide characterized by a ß-2,1 fructosyl-fructose structure terminating in a glucosyl moiety, is naturally present in plant roots and tubers. Current methods provide average degrees of polymerization (DP) but lack information on the distribution and absolute concentration of each DP. To address this limitation, a reproducible (CV < 10 %) high throughput (<2 min/sample) MALDI-MRMS approach capable of characterizing and quantifying inulin molecules in plants using matched-matrix consisting of α-cyano-4-hydroxycinnamic acid butylamine salt (CHCA-BA), chicory inulin-12C and inulin-13C was developed. The method identified variation in chain lengths and concentration of inulin across various plant species. Globe artichoke hearts, yacón and elephant garlic yielded similar concentrations at 15.6 g/100 g dry weight (DW), 16.8 g/100 g DW and 17.7 g/100 g DW, respectively, for DP range between 9 and 22. In contrast, Jerusalem artichoke demonstrated the highest concentration (53.4 g/100 g DW) within the same DP ranges. Jerusalem artichoke (DPs 9-32) and globe artichoke (DPs 9-36) showed similar DP distributions, while yacón and elephant garlic displayed the narrowest and broadest DP ranges (DPs 9-19 and DPs 9-45, respectively). Additionally, qualitative measurement for all inulin across all plant samples was feasible using the peak intensities normalized to Inulin-13C, and showed that the ratio of yacón, elephant garlic and Jerusalem was approximately one, two and three times that of globe artichoke. This MALDI-MRMS approach provides comprehensive insights into the structure of inulin molecules, opening avenues for in-depth investigations into how DP and concentration of inulin influence gut health and the modulation of noncommunicable diseases, as well as shedding light on refining cultivation practices to elevate the beneficial health properties associated with specific DPs.


Assuntos
Produtos Biológicos , Cynara scolymus , Alho , Helianthus , Inulina , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Antioxidantes , Espectroscopia de Ressonância Magnética , Lasers
2.
J Proteome Res ; 23(3): 956-970, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38310443

RESUMO

We present compelling evidence for the existence of an extended innate viperin-dependent pathway, which provides crucial evidence for an adaptive response to viral agents, such as SARS-CoV-2. We show the in vivo biosynthesis of a family of novel endogenous cytosine metabolites with potential antiviral activities. Two-dimensional nuclear magnetic resonance (NMR) spectroscopy revealed a characteristic spin-system motif, indicating the presence of an extended panel of urinary metabolites during the acute viral replication phase. Mass spectrometry additionally enabled the characterization and quantification of the most abundant serum metabolites, showing the potential diagnostic value of the compounds for viral infections. In total, we unveiled ten nucleoside (cytosine- and uracil-based) analogue structures, eight of which were previously unknown in humans allowing us to propose a new extended viperin pathway for the innate production of antiviral compounds. The molecular structures of the nucleoside analogues and their correlation with an array of serum cytokines, including IFN-α2, IFN-γ, and IL-10, suggest an association with the viperin enzyme contributing to an ancient endogenous innate immune defense mechanism against viral infection.


Assuntos
COVID-19 , Humanos , Estrutura Molecular , SARS-CoV-2 , Imunidade Inata , Citosina , Redes e Vias Metabólicas , Antivirais
3.
J Clin Lipidol ; 17(5): 677-687, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37442713

RESUMO

BACKGROUND: Circulating lipids and lipoproteins mediate cardiovascular risk, however routine plasma lipid biochemistry provides limited information on pro-atherogenic remnant particles. OBJECTIVE: We analysed plasma lipoprotein subclasses including very low-density and intermediate-density lipoprotein (VLDL and IDL); and assessed their associations with health and cardiometabolic risk. METHODS: From 1,976 community-dwelling adults aged 45-67 years, 114/1071 women (10.6%) and 153/905 men (16.9%) were categorised as very healthy. Fasting plasma lipoprotein profiles comprising 112 parameters were measured using 1H nuclear magnetic resonance (NMR) spectroscopy, and associations with health status and cardiometabolic risk factors examined. RESULTS: HDL cholesterol was higher, and IDL and VLDL cholesterol and triglycerides lower, in very healthy women compared to other women, and women compared to men. IDL and VLDL cholesterol and triglyceride were lower in very healthy men compared to other men. HDL cholesterol and apolipoprotein (apo) A-I were inversely, and IDL and VLDL cholesterol, apoB-100, and apoB-100/apoA-I ratio directly associated with body mass index (BMI) in women and men. In women, LDL, IDL and VLDL cholesterol increased with age. Women with diabetes and cardiovascular disease had higher cholesterol, triglycerides, phospholipids and free cholesterol across IDL and VLDL fractions, with similar trends for men with diabetes. CONCLUSION: Lipoprotein subclasses and density fractions, and their lipid and apolipoprotein constituents, are differentially distributed by sex, health status and BMI. Very healthy women and men are distinguished by favorable lipoprotein profiles, particularly lower concentrations of VLDL and IDL, providing reference intervals for comparison with general populations and adults with cardiometabolic risk factors.


Assuntos
Fatores de Risco Cardiometabólico , Diabetes Mellitus , Masculino , Pessoa de Meia-Idade , Humanos , Feminino , Idoso , Apolipoproteína B-100 , VLDL-Colesterol , HDL-Colesterol , Lipoproteínas , Lipoproteínas VLDL , Colesterol , Triglicerídeos , Nível de Saúde
4.
Metabolites ; 13(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37110172

RESUMO

Demographic and clinical factors influence the metabolome. The discovery and validation of disease biomarkers are often challenged by potential confounding effects from such factors. To address this challenge, we investigated the magnitude of the correlation between serum and urine metabolites and demographic and clinical parameters in a well-characterized observational cohort of 444 post-menopausal women participating in the Women's Health Initiative (WHI). Using LC-MS and lipidomics, we measured 157 aqueous metabolites and 756 lipid species across 13 lipid classes in serum, along with 195 metabolites detected by GC-MS and NMR in urine and evaluated their correlations with 29 potential disease risk factors, including demographic, dietary and lifestyle factors, and medication use. After controlling for multiple testing (FDR < 0.01), we found that log-transformed metabolites were mainly associated with age, BMI, alcohol intake, race, sample storage time (urine only), and dietary supplement use. Statistically significant correlations were in the absolute range of 0.2-0.6, with the majority falling below 0.4. Incorporation of important potential confounding factors in metabolite and disease association analyses may lead to improved statistical power as well as reduced false discovery rates in a variety of data analysis settings.

5.
Food Chem ; 410: 135366, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36641906

RESUMO

Free-range eggs are ethically desirable but as with all high-value commercial products, the establishment of provenance can be problematic. Here, we compared a simple one-step isopropanol method to a two-step methyl-tert-butyl ether method for extracting lipid species in chicken egg yolks before liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The isopropanol method extracted 937 lipid species from 20 major lipid subclasses with high reproducibility (CV < 30 %). Machine learning techniques could differentiate conventional cage, barn, and free-range eggs using an external test dataset with an accuracy of 0.94, 0.82, and 0.82, respectively. Lipid species that differentiated cage eggs were predominantly phosphocholines and phosphoethanolamines whilst the free-range egg lipidomes were dominated by acylglycerides with up to three fatty acids. The lipid profiles were found to be characteristic of the cage, barns, and free-range eggs. The lipidomic analysis together with the statistical modeling approach thus provides an efficient tool for verifying the provenance of conventional chicken eggs.


Assuntos
Galinhas , Lipidômica , Animais , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , 2-Propanol , Reprodutibilidade dos Testes , Ovos/análise , Lipídeos , Cromatografia Líquida de Alta Pressão/métodos
6.
Am J Clin Nutr ; 116(1): 216-229, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35285859

RESUMO

BACKGROUND: Adherence to the Dietary Approaches to Stop Hypertension (DASH) diet enhances potassium intake and reduces sodium intake and blood pressure (BP), but the underlying metabolic pathways are unclear. OBJECTIVES: Among free-living populations, we delineated metabolic signatures associated with the DASH diet adherence, 24-hour urinary sodium and potassium excretions, and the potential metabolic pathways involved. METHODS: We used 24-hour urinary metabolic profiling by proton nuclear magnetic resonance spectroscopy to characterize the metabolic signatures associated with the DASH dietary pattern score (DASH score) and 24-hour excretion of sodium and potassium among participants in the United States (n = 2164) and United Kingdom (n = 496) enrolled in the International Study of Macro- and Micronutrients and Blood Pressure (INTERMAP). Multiple linear regression and cross-tabulation analyses were used to investigate the DASH-BP relation and its modulation by sodium and potassium. Potential pathways associated with DASH adherence, sodium and potassium excretion, and BP were identified using mediation analyses and metabolic reaction networks. RESULTS: Adherence to the DASH diet was associated with urinary potassium excretion (correlation coefficient, r = 0.42; P < 0.0001). In multivariable regression analyses, a 5-point higher DASH score (range, 7 to 35) was associated with a lower systolic BP by 1.35 mmHg (95% CI, -1.95 to -0.80 mmHg; P = 1.2 × 10-5); control of the model for potassium but not sodium attenuated the DASH-BP relation. Two common metabolites (hippurate and citrate) mediated the potassium-BP and DASH-BP relationships, while 5 metabolites (succinate, alanine, S-methyl cysteine sulfoxide, 4-hydroxyhippurate, and phenylacetylglutamine) were found to be specific to the DASH-BP relation. CONCLUSIONS: Greater adherence to the DASH diet is associated with lower BP and higher potassium intake across levels of sodium intake. The DASH diet recommends greater intake of fruits, vegetables, and other potassium-rich foods that may replace sodium-rich processed foods and thereby influence BP through overlapping metabolic pathways. Possible DASH-specific pathways are speculated but confirmation requires further study. INTERMAP is registered as NCT00005271 at www.clinicaltrials.gov.


Assuntos
Abordagens Dietéticas para Conter a Hipertensão , Hipertensão , Sódio na Dieta , Pressão Sanguínea/fisiologia , Humanos , Micronutrientes , Potássio , Sódio
7.
Anal Chem ; 94(10): 4426-4436, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35230805

RESUMO

SARS-CoV-2 infection causes a significant reduction in lipoprotein-bound serum phospholipids give rise to supramolecular phospholipid composite (SPC) signals observed in diffusion and relaxation edited 1H NMR spectra. To characterize the chemical structural components and compartmental location of SPC and to understand further its possible diagnostic properties, we applied a Statistical HeterospectroscopY in n-dimensions (SHY-n) approach. This involved statistically linking a series of orthogonal measurements made on the same samples, using independent analytical techniques and instruments, to identify the major individual phospholipid components giving rise to the SPC signals. Thus, an integrated model for SARS-CoV-2 positive and control adults is presented that relates three identified diagnostic subregions of the SPC signal envelope (SPC1, SPC2, and SPC3) generated using diffusion and relaxation edited (DIRE) NMR spectroscopy to lipoprotein and lipid measurements obtained by in vitro diagnostic NMR spectroscopy and ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The SPC signals were then correlated sequentially with (a) total phospholipids in lipoprotein subfractions; (b) apolipoproteins B100, A1, and A2 in different lipoproteins and subcompartments; and (c) MS-measured total serum phosphatidylcholines present in the NMR detection range (i.e., PCs: 16.0,18.2; 18.0,18.1; 18.2,18.2; 16.0,18.1; 16.0,20.4; 18.0,18.2; 18.1,18.2), lysophosphatidylcholines (LPCs: 16.0 and 18.2), and sphingomyelin (SM 22.1). The SPC3/SPC2 ratio correlated strongly (r = 0.86) with the apolipoprotein B100/A1 ratio, a well-established marker of cardiovascular disease risk that is markedly elevated during acute SARS-CoV-2 infection. These data indicate the considerable potential of using a serum SPC measurement as a metric of cardiovascular risk based on a single NMR experiment. This is of specific interest in relation to understanding the potential for increased cardiovascular risk in COVID-19 patients and risk persistence in post-acute COVID-19 syndrome (PACS).


Assuntos
COVID-19 , Doenças Cardiovasculares , Adulto , Biomarcadores , COVID-19/complicações , COVID-19/diagnóstico , Doenças Cardiovasculares/diagnóstico , Humanos , Lipoproteínas , Fosfolipídeos , Fatores de Risco , SARS-CoV-2 , Espectrometria de Massas em Tandem/métodos , Síndrome de COVID-19 Pós-Aguda
8.
J Proteome Res ; 21(3): 560-589, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35142516

RESUMO

Trimethylamine (TMA) and its N-oxide (TMAO) are ubiquitous in prokaryote and eukaryote organisms as well as in the environment, reflecting their fundamental importance in evolutionary biology, and their diverse biochemical functions. Both metabolites have multiple biological roles including cell-signaling. Much attention has focused on the significance of serum and urinary TMAO in cardiovascular disease risk, yet this is only one of the many facets of a deeper TMA-TMAO partnership that reflects the significance of these metabolites in multiple biological processes spanning animals, plants, bacteria, and fungi. We report on analytical methods for measuring TMA and TMAO and attempt to critically synthesize and map the global functions of TMA and TMAO in a systems biology framework.


Assuntos
Bactérias , Metilaminas , Animais , Bactérias/metabolismo , Óxidos
9.
J Proteome Res ; 20(8): 4139-4152, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34251833

RESUMO

Quantitative plasma lipoprotein and metabolite profiles were measured on an autonomous community of the Basque Country (Spain) cohort consisting of hospitalized COVID-19 patients (n = 72) and a matched control group (n = 75) and a Western Australian (WA) cohort consisting of (n = 17) SARS-CoV-2 positives and (n = 20) healthy controls using 600 MHz 1H nuclear magnetic resonance (NMR) spectroscopy. Spanish samples were measured in two laboratories using one-dimensional (1D) solvent-suppressed and T2-filtered methods with in vitro diagnostic quantification of lipoproteins and metabolites. SARS-CoV-2 positive patients and healthy controls from both populations were modeled and cross-projected to estimate the biological similarities and validate biomarkers. Using the top 15 most discriminatory variables enabled construction of a cross-predictive model with 100% sensitivity and specificity (within populations) and 100% sensitivity and 82% specificity (between populations). Minor differences were observed between the control metabolic variables in the two cohorts, but the lipoproteins were virtually indistinguishable. We observed highly significant infection-related reductions in high-density lipoprotein (HDL) subfraction 4 phospholipids, apolipoproteins A1 and A2,that have previously been associated with negative regulation of blood coagulation and fibrinolysis. The Spanish and Australian diagnostic SARS-CoV-2 biomarkers were mathematically and biologically equivalent, demonstrating that NMR-based technologies are suitable for the study of the comparative pathology of COVID-19 via plasma phenotyping.


Assuntos
COVID-19 , SARS-CoV-2 , Austrália , Biomarcadores , Humanos , Lipoproteínas
11.
J Proteome Res ; 20(6): 3315-3329, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34009992

RESUMO

We present a multivariate metabotyping approach to assess the functional recovery of nonhospitalized COVID-19 patients and the possible biochemical sequelae of "Post-Acute COVID-19 Syndrome", colloquially known as long-COVID. Blood samples were taken from patients ca. 3 months after acute COVID-19 infection with further assessment of symptoms at 6 months. Some 57% of the patients had one or more persistent symptoms including respiratory-related symptoms like cough, dyspnea, and rhinorrhea or other nonrespiratory symptoms including chronic fatigue, anosmia, myalgia, or joint pain. Plasma samples were quantitatively analyzed for lipoproteins, glycoproteins, amino acids, biogenic amines, and tryptophan pathway intermediates using Nuclear Magnetic Resonance (NMR) spectroscopy and mass spectrometry. Metabolic data for the follow-up patients (n = 27) were compared with controls (n = 41) and hospitalized severe acute respiratory syndrome SARS-CoV-2 positive patients (n = 18, with multiple time-points). Univariate and multivariate statistics revealed variable patterns of functional recovery with many patients exhibiting residual COVID-19 biomarker signatures. Several parameters were persistently perturbed, e.g., elevated taurine (p = 3.6 × 10-3 versus controls) and reduced glutamine/glutamate ratio (p = 6.95 × 10-8 versus controls), indicative of possible liver and muscle damage and a high energy demand linked to more generalized tissue repair or immune function. Some parameters showed near-complete normalization, e.g., the plasma apolipoprotein B100/A1 ratio was similar to that of healthy controls but significantly lower (p = 4.2 × 10-3) than post-acute COVID-19 patients, reflecting partial reversion of the metabolic phenotype (phenoreversion) toward the healthy metabolic state. Plasma neopterin was normalized in all follow-up patients, indicative of a reduction in the adaptive immune activity that has been previously detected in active SARS-CoV-2 infection. Other systemic inflammatory biomarkers such as GlycA and the kynurenine/tryptophan ratio remained elevated in some, but not all, patients. Correlation analysis, principal component analysis (PCA), and orthogonal-partial least-squares discriminant analysis (O-PLS-DA) showed that the follow-up patients were, as a group, metabolically distinct from controls and partially comapped with the acute-phase patients. Significant systematic metabolic differences between asymptomatic and symptomatic follow-up patients were also observed for multiple metabolites. The overall metabolic variance of the symptomatic patients was significantly greater than that of nonsymptomatic patients for multiple parameters (χ2p = 0.014). Thus, asymptomatic follow-up patients including those with post-acute COVID-19 Syndrome displayed a spectrum of multiple persistent biochemical pathophysiology, suggesting that the metabolic phenotyping approach may be deployed for multisystem functional assessment of individual post-acute COVID-19 patients.


Assuntos
COVID-19 , COVID-19/complicações , Humanos , Lipoproteínas , Espectroscopia de Ressonância Magnética , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda
12.
Anal Chem ; 93(8): 3976-3986, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33577736

RESUMO

We have applied nuclear magnetic resonance spectroscopy based plasma phenotyping to reveal diagnostic molecular signatures of SARS-CoV-2 infection via combined diffusional and relaxation editing (DIRE). We compared plasma from healthy age-matched controls (n = 26) with SARS-CoV-2 negative non-hospitalized respiratory patients and hospitalized respiratory patients (n = 23 and 11 respectively) with SARS-CoV-2 rRT-PCR positive respiratory patients (n = 17, with longitudinal sampling time-points). DIRE data were modelled using principal component analysis and orthogonal projections to latent structures discriminant analysis (O-PLS-DA), with statistical cross-validation indices indicating excellent model generalization for the classification of SARS-CoV-2 positivity for all comparator groups (area under the receiver operator characteristic curve = 1). DIRE spectra show biomarker signal combinations conferred by differential concentrations of metabolites with selected molecular mobility properties. These comprise the following: (a) composite N-acetyl signals from α-1-acid glycoprotein and other glycoproteins (designated GlycA and GlycB) that were elevated in SARS-CoV-2 positive patients [p = 2.52 × 10-10 (GlycA) and 1.25 × 10-9 (GlycB) vs controls], (b) two diagnostic supramolecular phospholipid composite signals that were identified (SPC-A and SPC-B) from the -+N-(CH3)3 choline headgroups of lysophosphatidylcholines carried on plasma glycoproteins and from phospholipids in high-density lipoprotein subfractions (SPC-A) together with a phospholipid component of low-density lipoprotein (SPC-B). The integrals of the summed SPC signals (SPCtotal) were reduced in SARS-CoV-2 positive patients relative to both controls (p = 1.40 × 10-7) and SARS-CoV-2 negative patients (p = 4.52 × 10-8) but were not significantly different between controls and SARS-CoV-2 negative patients. The identity of the SPC signal components was determined using one and two dimensional diffusional, relaxation, and statistical spectroscopic experiments. The SPCtotal/GlycA ratios were also significantly different for control versus SARS-CoV-2 positive patients (p = 1.23 × 10-10) and for SARS-CoV-2 negatives versus positives (p = 1.60 × 10-9). Thus, plasma SPCtotal and SPCtotal/GlycA are proposed as sensitive molecular markers for SARS-CoV-2 positivity that could effectively augment current COVID-19 diagnostics and may have value in functional assessment of the disease recovery process in patients with long-term symptoms.


Assuntos
COVID-19/diagnóstico , Orosomucoide/análise , Fosfolipídeos/sangue , Idoso , Biomarcadores/sangue , COVID-19/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Ressonância Magnética Nuclear Biomolecular/métodos , Orosomucoide/química , Fosfolipídeos/química , Espectroscopia de Prótons por Ressonância Magnética/métodos , Espectroscopia de Prótons por Ressonância Magnética/estatística & dados numéricos , Curva ROC , SARS-CoV-2
13.
J Proteome Res ; 20(2): 1382-1396, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33426894

RESUMO

To investigate the systemic metabolic effects of SARS-CoV-2 infection, we analyzed 1H NMR spectroscopic data on human blood plasma and co-modeled with multiple plasma cytokines and chemokines (measured in parallel). Thus, 600 MHz 1H solvent-suppressed single-pulse, spin-echo, and 2D J-resolved spectra were collected on plasma recorded from SARS-CoV-2 rRT-PCR-positive patients (n = 15, with multiple sampling timepoints) and age-matched healthy controls (n = 34, confirmed rRT-PCR negative), together with patients with COVID-19/influenza-like clinical symptoms who tested SARS-CoV-2 negative (n = 35). We compared the single-pulse NMR spectral data with in vitro diagnostic research (IVDr) information on quantitative lipoprotein profiles (112 parameters) extracted from the raw 1D NMR data. All NMR methods gave highly significant discrimination of SARS-CoV-2 positive patients from controls and SARS-CoV-2 negative patients with individual NMR methods, giving different diagnostic information windows on disease-induced phenoconversion. Longitudinal trajectory analysis in selected patients indicated that metabolic recovery was incomplete in individuals without detectable virus in the recovery phase. We observed four plasma cytokine clusters that expressed complex differential statistical relationships with multiple lipoproteins and metabolites. These included the following: cluster 1, comprising MIP-1ß, SDF-1α, IL-22, and IL-1α, which correlated with multiple increased LDL and VLDL subfractions; cluster 2, including IL-10 and IL-17A, which was only weakly linked to the lipoprotein profile; cluster 3, which included IL-8 and MCP-1 and were inversely correlated with multiple lipoproteins. IL-18, IL-6, and IFN-γ together with IP-10 and RANTES exhibited strong positive correlations with LDL1-4 subfractions and negative correlations with multiple HDL subfractions. Collectively, these data show a distinct pattern indicative of a multilevel cellular immune response to SARS CoV-2 infection interacting with the plasma lipoproteome giving a strong and characteristic immunometabolic phenotype of the disease. We observed that some patients in the respiratory recovery phase and testing virus-free were still metabolically highly abnormal, which indicates a new role for these technologies in assessing full systemic recovery.


Assuntos
COVID-19/diagnóstico , Quimiocinas/metabolismo , Citocinas/metabolismo , Lipoproteínas/metabolismo , Espectroscopia de Ressonância Magnética/métodos , SARS-CoV-2/metabolismo , Adulto , Idoso , COVID-19/sangue , COVID-19/virologia , Quimiocinas/sangue , Citocinas/sangue , Feminino , Interações Hospedeiro-Patógeno , Humanos , Lipoproteínas/sangue , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Proteômica/métodos , SARS-CoV-2/fisiologia
14.
J Proteome Res ; 20(2): 1415-1423, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33491459

RESUMO

The utility of low sample volume in vitro diagnostic (IVDr) proton nuclear magnetic resonance (1H NMR) spectroscopic experiments on blood plasma for information recovery from limited availability or high value samples was exemplified using plasma from patients with SARS-CoV-2 infection and normal controls. 1H NMR spectra were obtained using solvent-suppressed 1D, spin-echo (CPMG), and 2-dimensional J-resolved (JRES) spectroscopy using both 3 mm outer diameter SampleJet NMR tubes (100 µL plasma) and 5 mm SampleJet NMR tubes (300 µL plasma) under in vitro diagnostic conditions. We noted near identical diagnostic models in both standard and low volume IVDr lipoprotein analysis (measuring 112 lipoprotein parameters) with a comparison of the two tubes yielding R2 values ranging between 0.82 and 0.99 for the 40 paired lipoprotein parameters samples. Lipoprotein measurements for the 3 mm tubes were achieved without time penalty over the 5 mm tubes as defined by biomarker recovery for SARS-CoV-2. Overall, biomarker pattern recovery for the lipoproteins was extremely similar, but there were some small positive offsets in the linear equations for several variables due to small shimming artifacts, but there was minimal degradation of the biological information. For the standard untargeted 1D, CPMG, and JRES NMR experiments on the same samples, the reduced signal-to-noise was more constraining and required greater scanning times to achieve similar differential diagnostic performance (15 min per sample per experiment for 3 mm 1D and CPMG, compared to 4 min for the 5 mm tubes). We conclude that the 3 mm IVDr method is fit-for-purpose for quantitative lipoprotein measurements, allowing the preparation of smaller volumes for high value or limited volume samples that is common in clinical studies. If there are no analytical time constraints, the lower volume experiments are equally informative for untargeted profiling.


Assuntos
COVID-19/diagnóstico , Lipoproteínas/metabolismo , Metabolômica/métodos , Proteômica/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , SARS-CoV-2/metabolismo , Adulto , Idoso , Biomarcadores/sangue , Biomarcadores/metabolismo , COVID-19/sangue , COVID-19/virologia , Feminino , Humanos , Lipoproteínas/sangue , Masculino , Pessoa de Meia-Idade , Mapas de Interação de Proteínas , SARS-CoV-2/fisiologia
15.
Bioinformatics ; 36(21): 5229-5236, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-32692809

RESUMO

MOTIVATION: Large-scale population omics data can provide insight into associations between gene-environment interactions and disease. However, existing dimension reduction modelling techniques are often inefficient for extracting detailed information from these complex datasets. RESULTS: Here, we present an interactive software pipeline for exploratory analyses of population-based nuclear magnetic resonance spectral data using a COmbined Multi-block Principal components Analysis with Statistical Spectroscopy (COMPASS) within the R-library hastaLaVista framework. Principal component analysis models are generated for a sequential series of spectral regions (blocks) to provide more granular detail defining sub-populations within the dataset. Molecular identification of key differentiating signals is subsequently achieved by implementing Statistical TOtal Correlation SpectroscopY on the full spectral data to define feature patterns. Finally, the distributions of cross-correlation of the reference patterns across the spectral dataset are used to provide population statistics for identifying underlying features arising from drug intake, latent diseases and diet. The COMPASS method thus provides an efficient semi-automated approach for screening population datasets. AVAILABILITY AND IMPLEMENTATION: Source code is available at https://github.com/cheminfo/COMPASS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Humanos , Fenótipo , Análise de Componente Principal , Análise Espectral
16.
J Expo Sci Environ Epidemiol ; 31(2): 328-344, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32709935

RESUMO

BACKGROUND: Exposure-response studies and policy evaluations of household air pollution (HAP) are limited by current methods of exposure assessment which are expensive and burdensome to participants. METHODS: We collected 152 dried blood spot (DBS) specimens during the heating and non-heating seasons from 53 women who regularly used biomass-burning stoves for cooking and heating. Participants were enrolled in a longitudinal study in China. Untargeted metabolic phenotyping of DBS were generated using ultra-high performance liquid chromatography coupled with mass spectrometry to exemplify measurement precision and assessment for feasibility to detect exposure to HAP, evaluated by season (high pollution vs. low pollution) and measured personal exposure to fine particulate matter <2.5 µm diameters (PM2.5) and black carbon (BC) in the 48-h prior to collecting the DBS specimen. RESULTS: Metabolites e.g., amino acids, acyl-carnitines, lyso-phosphorylcholines, sphinganine, and choline were detected in the DBS specimens. Our approach is capable of detecting the differences in personal exposure to HAP whilst showing high analytical reproducibility, coefficient of variance (CV) <15%, meeting the U.S. Food and Drug Administration criteria. CONCLUSIONS: Our results provide a proof of principle that high-resolution metabolic phenotypic data can be generated using a simple DBS extraction method thus suitable for exposure studies in remote, low-resource settings where the collection of serum and plasma is logistically challenging or infeasible. The analytical run time (19 min/specimen) is similar to most global phenotyping methods and therefore suitable for large-scale application.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , China , Culinária , Exposição Ambiental/análise , Estudos de Viabilidade , Feminino , Humanos , Estudos Longitudinais , Material Particulado/análise , Reprodutibilidade dos Testes , População Rural
17.
J Proteome Res ; 19(11): 4428-4441, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32852212

RESUMO

Quantitative nuclear magnetic resonance (NMR) spectroscopy of blood plasma is widely used to investigate perturbed metabolic processes in human diseases. The reliability of biochemical data derived from these measurements is dependent on the quality of the sample collection and exact preparation and analysis protocols. Here, we describe systematically, the impact of variations in sample collection and preparation on information recovery from quantitative proton (1H) NMR spectroscopy of human blood plasma and serum. The effects of variation of blood collection tube sizes and preservatives, successive freeze-thaw cycles, sample storage at -80 °C, and short-term storage at 4 and 20 °C on the quantitative lipoprotein and metabolite patterns were investigated. Storage of plasma samples at 4 °C for up to 48 h, freezing at -80 °C and blood sample collection tube choice have few and minor effects on quantitative lipoprotein profiles, and even storage at 4 °C for up to 168 h caused little information loss. In contrast, the impact of heat-treatment (56 °C for 30 min), which has been used for inactivation of SARS-CoV-2 and other viruses, that may be required prior to analytical measurements in low level biosecurity facilities induced marked changes in both lipoprotein and low molecular weight metabolite profiles. It was conclusively demonstrated that this heat inactivation procedure degrades lipoproteins and changes metabolic information in complex ways. Plasma from control individuals and SARS-CoV-2 infected patients are differentially altered resulting in the creation of artifactual pseudo-biomarkers and destruction of real biomarkers to the extent that data from heat-treated samples are largely uninterpretable. We also present several simple blood sample handling recommendations for optimal NMR-based biomarker discovery investigations in SARS CoV-2 studies and general clinical biomarker research.


Assuntos
Análise Química do Sangue/normas , Coleta de Amostras Sanguíneas/instrumentação , Infecções por Coronavirus , Lipoproteínas/sangue , Espectroscopia de Ressonância Magnética/métodos , Pandemias , Pneumonia Viral , Artefatos , COVID-19 , Temperatura Alta , Humanos , Reprodutibilidade dos Testes
18.
J Proteome Res ; 19(11): 4442-4454, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32806897

RESUMO

The metabolic effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on human blood plasma were characterized using multiplatform metabolic phenotyping with nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). Quantitative measurements of lipoprotein subfractions, α-1-acid glycoprotein, glucose, and biogenic amines were made on samples from symptomatic coronavirus disease 19 (COVID-19) patients who had tested positive for the SARS-CoV-2 virus (n = 17) and from age- and gender-matched controls (n = 25). Data were analyzed using an orthogonal-projections to latent structures (OPLS) method and used to construct an exceptionally strong (AUROC = 1) hybrid NMR-MS model that enabled detailed metabolic discrimination between the groups and their biochemical relationships. Key discriminant metabolites included markers of inflammation including elevated α-1-acid glycoprotein and an increased kynurenine/tryptophan ratio. There was also an abnormal lipoprotein, glucose, and amino acid signature consistent with diabetes and coronary artery disease (low total and HDL Apolipoprotein A1, low HDL triglycerides, high LDL and VLDL triglycerides), plus multiple highly significant amino acid markers of liver dysfunction (including the elevated glutamine/glutamate and Fischer's ratios) that present themselves as part of a distinct SARS-CoV-2 infection pattern. A multivariate training-test set model was validated using independent samples from additional SARS-CoV-2 positive patients and controls. The predictive model showed a sensitivity of 100% for SARS-CoV-2 positivity. The breadth of the disturbed pathways indicates a systemic signature of SARS-CoV-2 positivity that includes elements of liver dysfunction, dyslipidemia, diabetes, and coronary heart disease risk that are consistent with recent reports that COVID-19 is a systemic disease affecting multiple organs and systems. Metabolights study reference: MTBLS2014.


Assuntos
Aminoácidos/sangue , Infecções por Coronavirus , Lipoproteínas/sangue , Modelos Biológicos , Insuficiência de Múltiplos Órgãos , Pandemias , Pneumonia Viral , Idoso , Betacoronavirus , Biomarcadores , Glicemia/análise , COVID-19 , Infecções por Coronavirus/sangue , Infecções por Coronavirus/complicações , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/metabolismo , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Espectrometria de Massas , Metaboloma , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/sangue , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/metabolismo , Pneumonia Viral/sangue , Pneumonia Viral/complicações , Pneumonia Viral/epidemiologia , Pneumonia Viral/metabolismo , SARS-CoV-2
19.
Am J Clin Nutr ; 111(2): 280-290, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31782492

RESUMO

BACKGROUND: Results from observational studies regarding associations between fish (including shellfish) intake and cardiovascular disease risk factors, including blood pressure (BP) and BMI, are inconsistent. OBJECTIVE: To investigate associations of fish consumption and associated urinary metabolites with BP and BMI in free-living populations. METHODS: We used cross-sectional data from the International Study of Macro-/Micronutrients and Blood Pressure (INTERMAP), including 4680 men and women (40-59 y) from Japan, China, the United Kingdom, and United States. Dietary intakes were assessed by four 24-h dietary recalls and BP from 8 measurements. Urinary metabolites (2 timed 24-h urinary samples) associated with fish intake acquired from NMR spectroscopy were identified. Linear models were used to estimate BP and BMI differences across categories of intake and per 2 SD higher intake of fish and its biomarkers. RESULTS: No significant associations were observed between fish intake and BP. There was a direct association with fish intake and BMI in the Japanese population sample (P trend = 0.03; fully adjusted model). In Japan, trimethylamine-N-oxide (TMAO) and taurine, respectively, demonstrated area under the receiver operating characteristic curve (AUC) values of 0.81 and 0.78 in discriminating high against low fish intake, whereas homarine (a metabolite found in shellfish muscle) demonstrated an AUC of 0.80 for high/nonshellfish intake. Direct associations were observed between urinary TMAO and BMI for all regions except Japan (P < 0.0001) and in Western populations between TMAO and BP (diastolic blood pressure: mean difference 1.28; 95% CI: 0.55, 2.02 mmHg; P = 0.0006, systolic blood pressure: mean difference 1.67; 95% CI: 0.60, 2.73 mmHg; P = 0.002). CONCLUSIONS: Urinary TMAO showed a stronger association with fish intake in the Japanese compared with the Western population sample. Urinary TMAO was directly associated with BP in the Western but not the Japanese population sample. Associations between fish intake and its biomarkers and downstream associations with BP/BMI appear to be context specific. INTERMAP is registered at www.clinicaltrials.gov as NCT00005271.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Dieta , Peixes , Adulto , Animais , Pressão Sanguínea/fisiologia , Índice de Massa Corporal , Doenças Cardiovasculares/urina , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
20.
Am J Clin Nutr ; 107(3): 323-334, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29506183

RESUMO

Background: Interindividual variation in the response to diet is common, but the underlying mechanism for such variation is unclear. Objective: The objective of this study was to use a metabolic profiling approach to identify a panel of urinary metabolites representing individuals demonstrating typical (homogeneous) metabolic responses to healthy diets, and subsequently to define the association of these metabolites with improvement of risk factors for cardiovascular diseases (CVDs). Design: 24-h urine samples from 158 participants with pre-hypertension and stage 1 hypertension, collected at baseline and following the consumption of a carbohydrate-rich, a protein-rich, and a monounsaturated fat-rich healthy diet (6 wk/diet) in a randomized, crossover study, were analyzed by proton (1H) nuclear magnetic resonance (NMR) spectroscopy. Urinary metabolite profiles were interrogated to identify typical and variable responses to each diet. We quantified the differences in absolute excretion of metabolites, distinguishing between dietary comparisons within the typical response groups, and established their associations with CVD risk factors using linear regression. Results: Globally all 3 diets induced a similar pattern of change in the urinary metabolic profiles for the majority of participants (60.1%). Diet-dependent metabolic variation was not significantly associated with total cholesterol or low-density lipoprotein (LDL) cholesterol concentration. However, blood pressure (BP) was found to be significantly associated with 6 urinary metabolites reflecting dietary intake [proline-betaine (inverse), carnitine (direct)], gut microbial co-metabolites [hippurate (direct), 4-cresyl sulfate (inverse), phenylacetylglutamine (inverse)], and tryptophan metabolism [N-methyl-2-pyridone-5-carboxamide (inverse)]. A dampened clinical response was observed in some individuals with variable metabolic responses, which could be attributed to nonadherence to diet (≤25.3%), variation in gut microbiome activity (7.6%), or a combination of both (7.0%). Conclusions: These data indicate interindividual variations in BP in response to dietary change and highlight the potential influence of the gut microbiome in mediating this relation. This approach provides a framework for stratification of individuals undergoing dietary management. The original OmniHeart intervention study and the metabolomics study were registered at www.clinicaltrials.gov as NCT00051350 and NCT03369535, respectively.


Assuntos
Pressão Sanguínea , Dieta Saudável , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças Cardiovasculares/urina , Carnitina/urina , Colesterol/sangue , Análise por Conglomerados , Creatina/urina , Estudos Cross-Over , Cisteína/urina , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...