Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Phys Med Biol ; 69(8)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38452383

RESUMO

Objective. The aim of this work is to investigate the response of the Roos chamber (type 34001) irradiated by clinical proton beams in magnetic fields.Approach. At first, a Fano test was implemented in Monte Carlo software package GATE version 9.2 (based on Geant4 version 11.0.2) using a cylindrical slab geometry in a magnetic field up to 1 T. In accordance to an experimental setup (Fuchset al2021), the magnetic field correction factorskQB⃗of the Roos chamber were determined at different energies up to 252 MeV and magnetic field strengths up to 1 T, by separately simulating the ratios of chamber signalsMQ/MQB⃗,without and with magnetic field, and the dose-conversion factorsDw,QB⃗/Dw,Qin a small cylinder of water, with and without magnetic field. Additionally, detailed simulations were carried out to understand the observed magnetic field dependence.Main results. The Fano test was passed with deviations smaller than 0.25% between 0 and 1 T. The ratios of the chamber signals show both energy and magnetic field dependence. The maximum deviation of the dose-conversion factors from unity of 0.22% was observed at the lowest investigated proton energy of 97.4 MeV andB⃗= 1 T. The resultingkQB⃗factors increase initially with the applied magnetic field and decrease again after reaching a maximum at around 0.5 T; except for the lowest 97.4 MeV beam that show no observable magnetic field dependence. The deviation from unity of the factors is also larger for higher proton energies, where the maximum lies at 1.0035(5), 1.0054(7) and 1.0069(7) for initial energies ofE0= 152, 223.4 and 252 MeV, respectively.Significance. Detailed Monte Carlo studies showed that the observed effect can be mainly attributed to the differences in the transport of electrons produced both outside and inside of the air cavity in the presence of a magnetic field.


Assuntos
Terapia com Prótons , Prótons , Radiometria/métodos , Terapia com Prótons/métodos , Campos Magnéticos , Método de Monte Carlo
2.
Med Phys ; 51(3): 2293-2305, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37898105

RESUMO

BACKGROUND: The combination of magnetic resonance imaging and proton therapy offers the potential to improve cancer treatment. The magnetic field (MF)-dependent change in the dosage of ionization chambers in magnetic resonance imaging-integrated proton therapy (MRiPT) is considered by the correction factor k B ⃗ , M , Q $k_{\vec{B},M,Q}$ , which needs to be determined experimentally or computed via Monte Carlo (MC) simulations. PURPOSE: In this study, k B ⃗ , M , Q $k_{\vec{B},M,Q}$ was both measured and simulated with high accuracy for a plane-parallel ionization chamber at different clinical relevant proton energies and MF strengths. MATERIAL AND METHODS: The dose-response of the Advanced Markus chamber (TM34045, PTW, Freiburg, Germany) irradiated with homogeneous 10 × $\times$ 10 cm 2 $^2$ quasi mono-energetic fields, using 103.3, 128.4, 153.1, 223.1, and 252.7 MeV proton beams was measured in a water phantom placed in the MF of an electromagnet with MF strengths of 0.32, 0.5, and 1 T. The detector was positioned at a depth of 2 g/cm 2 $^2$ in water, with chamber electrodes parallel to the MF lines and perpendicular to the proton beam incidence direction. The measurements were compared with TOPAS MC simulations utilizing COMSOL-calculated 0.32, 0.5, and 1 T MF maps of the electromagnet. k B ⃗ , M , Q $k_{\vec{B},M,Q}$ was calculated for the measurements for all energies and MF strengths based on the equation: k B ⃗ , M , Q = M Q M Q B ⃗ $k_{\vec{B},M,Q}=\frac{M_\mathrm{Q}}{M_\mathrm{Q}^{\vec{B}}}$ , where M Q B ⃗ $M_\mathrm{Q}^{\vec{B}}$ and M Q $M_\mathrm{Q}$ were the temperature and air-pressure corrected detector readings with and without the MF, respectively. MC-based correction factors were determined as k B ⃗ , M , Q = D det D det B ⃗ $k_{\vec{B},M,Q}=\frac{D_\mathrm{det}}{D_\mathrm{det}^{\vec{B}}}$ , where D det B ⃗ $D_\mathrm{det}^{\vec{B}}$ and D det $D_\mathrm{det}$ were the doses deposited in the air cavity of the ionization chamber model with and without the MF, respectively. Furthermore, MF effects on the chamber dosimetry are studied using MC simulations, examining the impact on the absorbed dose-to-water ( D W $D_{W}$ ) and the shift in depth of the Bragg peak. RESULTS: The detector showed a reduced dose-response for all measured energies and MF strengths, resulting in experimentally determined k B ⃗ , M , Q $k_{\vec{B},M,Q}$ values larger than unity. For all energies and MF strengths examined, k B ⃗ , M , Q $k_{\vec{B},M,Q}$ ranged between 1.0065 and 1.0205. The dependence on the energy and the MF strength was found to be non-linear with a maximum at 1 T and 252.7 MeV. The MC simulated k B ⃗ , M , Q $k_{\vec{B},M,Q}$ values agreed with the experimentally determined correction factors within their standard deviations with a maximum difference of 0.6%. The MC calculated impact on D W $D_{W}$ was smaller 0.2 %. CONCLUSION: For the first time, measurements and simulations were compared for proton dosimetry within MFs using an Advanced Markus chamber. Good agreement of k B ⃗ , M , Q $k_{\vec{B},M,Q}$ was found between experimentally determined and MC calculated values. The performed benchmarking of the MC code allows for calculating k B ⃗ , M , Q $k_{\vec{B},M,Q}$ for various ionization chamber models, MF strengths and proton energies to generate the data needed for a proton dosimetry protocol within MFs and is, therefore, a step towards MRiPT.


Assuntos
Terapia com Prótons , Prótons , Radiometria/métodos , Terapia com Prótons/métodos , Método de Monte Carlo , Água , Campos Magnéticos
3.
Med Phys ; 50(7): 4546-4561, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36908165

RESUMO

BACKGROUND AND PURPOSE: As a part of the commissioning and quality assurance in proton beam therapy, lateral dose profiles and output factors have to be acquired. Such measurements can be performed with point detectors and are especially challenging in small fields or steep lateral penumbra regions as the detector's volume effect may lead to perturbations. To address this issue, this work aims to quantify and correct for such perturbations of six point detectors in small proton fields created via three different delivery techniques. METHODS: Lateral dose profile and output measurements of three proton beam delivery techniques (pencil beam scanning, pencil beam scanning combined with collimators, passive scattering with collimators) were performed using high-resolution EBT3 films, a PinPoint 3D 31022 ionization chamber, a microSilicon diode 60023 and a microDiamond detector 60019 (all PTW Freiburg, Germany). Detector specific lateral dose response functions K(x,y) acting as the convolution kernel transforming the undisturbed dose distribution D(x,y) into the measured signal profiles M(x,y) were applied to quantify perturbations of the six investigated detectors in the proton fields and correct the measurements. A signal theoretical analysis in Fourier space of the dose distributions and detector's K(x,y) was performed to aid the understanding of the measurement process with regard to the combination of detector choice and delivery technique. RESULTS: Quantification of the lateral penumbra broadening and signal reduction at the fields center revealed that measurements in the pencil beam scanning fields are only compromised slightly even by large volume ionization chambers with maximum differences in the lateral penumbra of 0.25 mm and 4% signal reduction at the field center. In contrast, radiation techniques with collimation are not accurately represented by the investigated detectors as indicated by a penumbra broadening up to 1.6 mm for passive scattering with collimators and 2.2 mm for pencil beam scanning with collimators. For a 3 mm diameter collimator field, a signal reduction at field center between 7.6% and 60.7% was asserted. Lateral dose profile measurements have been corrected via deconvolution with the corresponding K(x,y) to obtain the undisturbed D(x,y). Corrected output ratios of the passively scattered collimated fields obtained for the microDiamond, microSilicon and PinPoint 3D show agreement better than 0.9% (one standard deviation) for the smallest field size of 3 mm. CONCLUSION: Point detector perturbations in small proton fields created with three delivery techniques were quantified and found to be especially pronounced for collimated small proton fields with steep dose gradients. Among all investigated detectors, the microSilicon diode showed the smallest perturbations. The correction strategies based on detector's K(x,y) were found suitable for obtaining unperturbed lateral dose profiles and output factors. Approximation of K(x,y) by considering only the geometrical averaging effect has been shown to provide reasonable prediction of the detector's volume effect. The findings of this work may be used to guide the choice of point detectors in various proton fields and to contribute toward the development of a code of practice for small field proton dosimetry.


Assuntos
Prótons , Radiometria , Método de Monte Carlo , Radiometria/métodos , Aceleradores de Partículas , Algoritmos , Fótons/uso terapêutico
4.
Z Med Phys ; 33(4): 529-541, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36577626

RESUMO

PURPOSE: The primary fluence of a proton pencil beam exiting the accelerator is enveloped by a region of secondaries, commonly called "spray". Although small in magnitude, this spray may affect dose distributions in pencil beam scanning mode e.g., in the calculation of the small field output, if not modelled properly in a treatment planning system (TPS). The purpose of this study was to dosimetrically benchmark the Monte Carlo (MC) dose engine of the RayStation TPS (v.10A) in small proton fields and systematically compare single Gaussian (SG) and double Gaussian (DG) modeling of initial proton fluence providing a more accurate representation of the nozzle spray. METHODS: The initial proton fluence distribution for SG/DG beam modeling was deduced from two-dimensional measurements in air with a scintillation screen with electronic readout. The DG model was either based on direct fits of the two Gaussians to the measured profiles, or by an iterative optimization procedure, which uses the measured profiles to mimic in-air scan-field factor (SF) measurements. To validate the DG beam models SFs, i.e. relative doses to a 10 × 10 cm2 field, were measured in water for three different initial proton energies (100MeV, 160MeV, 226.7MeV) and square field sizes from 1×1cm2 to 10×10cm2 using a small field ionization chamber (IBA CC01) and an IBA ProteusPlus system (universal nozzle). Furthermore, the dose to the center of spherical target volumes (diameters: 1cm to 10cm) was determined using the same small volume ionization chamber (IC). A comprehensive uncertainty analysis was performed, including estimates of influence factors typical for small field dosimetry deduced from a simple two-dimensional analytical model of the relative fluence distribution. Measurements were compared to the predictions of the RayStation TPS. RESULTS: SFs deviated by more than 2% from TPS predictions in all fields <4×4cm2 with a maximum deviation of 5.8% for SG modeling. In contrast, deviations were smaller than 2% for all field-sizes and proton energies when using the directly fitted DG model. The optimized DG model performed similarly except for slightly larger deviations in the 1×1cm2 scan-fields. The uncertainty estimates showed a significant impact of pencil beam size variations (±5%) resulting in up to 5.0% standard uncertainty. The point doses within spherical irradiation volumes deviated from calculations by up to 3.3% for the SG model and 2.0% for the DG model. CONCLUSION: Properly representing nozzle spray in RayStation's MC-based dose engine using a DG beam model was found to reduce the deviation to measurements in small spherical targets to below 2%. A thorough uncertainty analysis shows a similar magnitude for the combined standard uncertainty of such measurements.


Assuntos
Terapia com Prótons , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Terapia com Prótons/métodos , Método de Monte Carlo
5.
Phys Med ; 104: 10-17, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36356499

RESUMO

PURPOSE: Investigating and understanding of the underlying mechanisms affecting the charge collection efficiency (CCE) of vented ionization chambers under ultra-high dose rate pulsed electron radiation. This is an important step towards real-time dosimetry with ionization chambers in FLASH radiotherapy. METHODS: Parallel-plate ionization chambers (PPIC) with three different electrode distances were build and investigated with electron beams with ultra-high dose-per-pulse (DPP) up to 5.4 Gy. The measurements were compared with simulations. The experimental determination of the CCE was done by comparison against the reference dose based on alanine dosimetry. The numerical solution of a system of partial differential equations taking into account charge creations by the radiation, their transport and reaction in an applied electric field was used for the simulations of the CCE and the underlying effects. RESULTS: A good agreement between the experimental results and the simulated CCE could be achieved. The recombination losses found under ultra-high DPP could be attributed to a temporal and spatial charge carrier imbalance and the associated electric field distortion. With ultra-thin electrode distances down to 0.25 mm and a suitable chamber voltage, a CCE greater than 99 % could be achieved under the ultra-high DPP conditions investigated. CONCLUSIONS: Well-guarded ultra-thin PPIC are suited for real-time dosimetry under ultra-high DPP conditions. This allows dosimetry also for FLASH RT according to common codes of practice, traceable to primary standards. The numerical approach used allows the determination of appropriate correction factors beyond the DPP ranges where established theories are applicable to account for remaining recombination losses.

6.
Phys Med Biol ; 67(14)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35697024

RESUMO

Objective. Point detector measurements in proton fields are perturbed by the volume effect originating from geometrical volume-averaging within the extended detector's sensitive volume and density perturbations by non-water equivalent detector components. Detector specific lateral dose response functionsK(x) can be used to characterize the volume effect within the framework of a mathematical convolution model, whereK(x) is the convolution kernel transforming the true dose profileD(x) into the measured signal profile of a detectorM(x). The aim of this work is to investigateK(x) for detectors in proton beams.Approach. TheK(x) for five detectors were determined by iterative deconvolution of measurements ofD(x) andM(x) profiles at 2 cm water equivalent depth of a narrow 150 MeV proton beam. Monte Carlo simulations were carried out for two selected detectors to investigate a potential energy dependence, and to study the contribution of volume-averaging and density perturbation to the volume effect.Main results. The Monte Carlo simulated and experimentally determinedK(x) agree within 2.1% of the maximum value. Further simulations demonstrate that the main contribution to the volume effect is volume-averaging. The results indicate that an energy or depth dependence ofK(x) is almost negligible in proton beams. While the signal reduction from a Semiflex 3D ionization chamber in the center of a gaussian shaped field with 2 mm sigma is 32% for photons, it is 15% for protons. When measuring the field with a microDiamond the trend is less pronounced and reversed with a signal reduction for protons of 3.9% and photons of 1.9%.Significance. The determinedK(x) can be applied to characterize the influence of the volume effect on detectors measured signal profiles at all clinical proton energies and measurement depths. The functions can be used to derive the actual dose distribution from point detector measurements.


Assuntos
Prótons , Radiometria , Algoritmos , Método de Monte Carlo , Fótons , Radiometria/métodos
8.
Phys Med Biol ; 67(8)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35263722

RESUMO

Objective. To investigate the feasibility to train artificial neural networks (NN) to recover lateral dose profiles from detector measurements in a magnetic field.Approach. A novel framework based on a mathematical convolution model has been proposed to generate measurement-less training dataset. 2D dose deposition kernels and detector lateral fluence response functions of two air-filled ionization chambers and two diode-type detectors have been simulated without magnetic field and for magnetic fieldB = 0.35 and 1.5 T. Using these convolution kernels, training dataset consisting pairs of dose profilesDx,yand signal profilesMx,ywere computed for a total of 108 2D photon fluence profilesψ(x,y)(80% training/20% validation). The NN were tested using three independent datasets, where the second test dataset has been obtained from simulations using realistic phase space files of clinical linear accelerator and the third test dataset was measured at a conventional linac equipped with electromagnets. Mainresults. The convolution kernels show magnetic field dependence due to the influence of the Lorentz force on the electron transport in the water phantom and detectors. The NN show good performance during training and validation with mean square error reaching a value of 1e-6 or smaller. The corresponding correlation coefficientsRreached the value of 1 for all models indicating an excellent agreement between expectedDx,yand predictedDpredx,y.The comparisons betweenDx,yandDpredx,yusing the three test datasets resulted in gamma indices (1 mm/1% global) <1 for all evaluated data points.Significance. Two verification approaches have been proposed to warrant the mathematical consistencies of the NN outputs. Besides offering a correction strategy not existed so far for relative dosimetry in a magnetic field, this work could help to raise awareness and to improve understanding on the distortion of detector's signal profiles by a magnetic field.


Assuntos
Fótons , Radiometria , Aprendizado de Máquina , Campos Magnéticos , Método de Monte Carlo , Aceleradores de Partículas , Radiometria/métodos
9.
Phys Med Biol ; 67(4)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35016163

RESUMO

Objective.This study investigates the perturbation correction factors of air-filled ionization chambers regarding their depth and magnetic field dependence. Focus has been placed on the displacement or gradient correction factorPgr.Additionally, the shift of the effective point of measurementPeffthat can be applied to account for the gradient effect has been compared between the cases with and without magnetic field.Approach.The perturbation correction factors have been simulated by stepwise modifications of the models of three ionization chambers (Farmer 30013, Semiflex 3D 31021 and PinPoint 3D 31022, all from PTW Freiburg). A 10 cm × 10 cm 6 MV photon beam perpendicular to the chamber's axis was used. A 1.5 T magnetic field was aligned parallel to the chamber's axis. The correction factors were determined between 0.4 and 20 cm depth. The shift ofPefffrom the chamber's reference pointPref,Δz,was determined by minimizing the variation of the ratio between dose-to-waterDwzref+Δzand the dose-to-airD¯airzrefalong the depth.Main Results.The perturbation correction factors with and without magnetic field are depth dependent in the build-up region but can be considered as constant beyond the depth of dose maximum. Additionally, the correction factors are modified by the magnetic field.Pgrat the reference depth is found to be larger in 1.5 T magnetic field than in the magnetic field free case, where an increase of up to 1% is observed for the largest chamber (Farmer 30013). The magnitude ofΔzfor all chambers decreases by 40% in a 1.5 T magnetic field with the sign ofΔzremains negative.Significance.In reference dosimetry, the change ofPgrin a magnetic field can be corrected by applying the magnetic field correction factorkQmsrBwhen the chamber is positioned with itsPrefat the depth of measurement. However, due to the depth dependence of the perturbation factors, it is more convenient to apply theΔz-shift during chamber positioning in relative dosimetry.


Assuntos
Campos Magnéticos , Radiometria , Método de Monte Carlo , Fótons
10.
Biomed Phys Eng Express ; 8(1)2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34844222

RESUMO

The RUBY head phantom in combination with the System QA insert MultiMet can be used for simultaneous point dose measurements at an isocentric and two off-axis positions. This study investigates the suitability of the system for systematic integral end-to-end testing of single-isocenter multiple target stereotactic treatments. Several volumetric modulated arc therapy plans were optimized on a planning CT of the phantom positioned in a stereotactic mask on the stereotactic treatment board. The plans were created for three artificial spherical target volumes centred around the measurement positions in the MultiMet insert. Target diameters between 5 and 40 mm were investigated. Coplanar and non-coplanar plans were optimized using the collapsed cone algorithm of the Oncentra Masterplan treatment planning system and recalculated with the Monte Carlo algorithm of the Monaco treatment planning system. Measurements were performed at an Elekta Synergy linear accelerator. The head phantom was positioned according to clinical workflow comprising immobilization and CBCT imaging. Simultaneous point dose measurements at all target positions were performed with three PinPoint 3D chambers (type 31022) as well as three microDiamond detectors (type 60019) and compared to the treatment planning system calculations. Furthermore, the angular dependence of the detector response was investigated to estimate the associated impact on the measured point dose values. Considering all investigated plans, PTV diameters and positions, the point doses calculated with the Monaco treatment planning system and the microDiamond measurements differed within 3.5%, whereas the PinPoint 3D showed differences of up to 6.9%. Point dose differences determined in comparison to the Oncentra Masterplan dose calculations were larger. The RUBY system was shown to be suitable for end-to-end testing of complex treatment scenarios such as single-isocenter multiple target plans.


Assuntos
Radiocirurgia , Planejamento da Radioterapia Assistida por Computador , Aceleradores de Partículas , Imagens de Fantasmas , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
11.
J Appl Clin Med Phys ; 22(12): 64-71, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34633745

RESUMO

The purpose of this work is to study the feasibility of photon beam profile deconvolution using a feedforward neural network (NN) in very small fields (down to 0.56 × 0.56 cm2 ). The method's independence of the delivery and scanning system is also investigated. Lateral beam profiles of photon fields between 0.56 × 0.56 cm2 and 4.03 × 4.03 cm2 were collected on a Siemens Artiste linear accelerator. Three scanning ionization chambers (SNC 125c, PTW 31021, and PTW 31022) of sensitive volumes ranging from 0.016 cm3 to 0.108 cm3 were used with a PTW MP3 water phantom. A reference dataset was also collected with a PTW 60019 microDiamond detector to train and test individual NNs for each ionization chamber. Further testing of the trained NNs was performed with additional test data collected on an Elekta Synergy linear accelerator using a Sun Nuclear 3D Scanner. The results were evaluated with a 1D gamma analysis (0.5 mm/0.5%). After the deconvolution, the gamma passing rates increased from 54.79% to 99.58% for the SNC 125c, from 57.09% to 99.83% for the PTW 31021, and from 91.03% to 96.36% for the PTW 31022. The delivery system, the scanning system, the scanning mode (continuous vs. step-by-step), and the electrometer had no significant influence on the results. This study successfully demonstrated the feasibility of using NN to correct the beam profiles of very small photon fields collected with ionization chambers of various sizes. Its independence of the delivery and scanning system was also shown.


Assuntos
Aceleradores de Partículas , Radiometria , Humanos , Redes Neurais de Computação , Imagens de Fantasmas , Fótons
12.
Phys Med Biol ; 66(15)2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34181591

RESUMO

The aim of the present work is to investigate the behavior of two diode-type detectors (PTW microDiamond 60019 and PTW microSilicon 60023) in transverse magnetic field under small field conditions. A formalism based on TRS 483 has been proposed serving as the framework for the application of these high-resolution detectors under these conditions. Measurements were performed at the National Metrology Institute of Germany (PTB, Braunschweig) using a research clinical linear accelerator facility. Quadratic fields corresponding to equivalent square field sizesSbetween 0.63 and 4.27 cm at the depth of measurement were used. The magnetic field strength was varied up to 1.4 T. Experimental results have been complemented with Monte Carlo simulations up to 1.5 T. Detailed simulations were performed to quantify the small field perturbation effects and the influence of detector components on the dose response. The does response of both detectors decreases by up to 10% at 1.5 T in the largest field size investigated. InS = 0.63 cm, this reduction at 1.5 T is only about half of that observed in field sizesS > 2 cm for both detectors. The results of the Monte Carlo simulations show agreement better than 1% for all investigated conditions. Due to normalization at the machine specific reference field, the resulting small field output correction factors for both detectors in magnetic fieldkQclin,QmsrBare smaller than those in the magnetic field-free case, where correction up to 6.2% at 1.5 T is required for the microSilicon in the smallest field size investigated. The volume-averaging effect of both detectors was shown to be nearly independent of the magnetic field. The influence of the enhanced-density components within the detectors has been identified as the major contributors to their behaviors in magnetic field. Nevertheless, the effect becomes weaker with decreasing field size that may be partially attributed to the deficiency of low energy secondary electrons originated from distant locations in small fields.


Assuntos
Fótons , Radiometria , Campos Magnéticos , Método de Monte Carlo , Aceleradores de Partículas
13.
Med Phys ; 48(8): 4572-4585, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34032298

RESUMO

PURPOSE: The magnetic-field correction factors k B , Q of compact air-filled ionization chambers have been investigated experimentally and using Monte Carlo simulations up to 1.5 T. The role of the nonsensitive region within the air cavity and influence of the chamber construction on its dose response have been elucidated. MATERIALS AND METHODS: The PTW Semiflex 3D 31021, PinPoint 3D 31022, and Sun Nuclear Cooperation SNC125c chambers were studied. The k B , Q factors were measured at the experimental facility of the German National Metrology Institute (PTB) up to 1.4 T using a 6 MV photon beam. The chambers were positioned with the chamber axis perpendicular to the beam axis (radial); and parallel to the beam axis (axial). In both cases, the magnetic field was directed perpendicular to both the beam axis and chamber axis. Additionally, the sensitive volumes of these chambers have been experimentally determined using a focused proton microbeam and finite element method. Beside the simulations of k B , Q factors, detailed Monte Carlo technique has been applied to analyse the secondary electron fluence within the air cavity, that is, the number of secondary electrons and the average path length as a function of the magnetic field strength. RESULTS: A nonsensitive volume within the air cavity adjacent to the chamber stem for the PTW chambers has been identified from the microbeam measurements and FEM calculations. The dose response of the three investigated ionization chambers does not deviate by more than 4% from the field-free case within the range of magnetic fields studied in this work for both the radial and axial orientations. The simulated k B , Q for the fully guarded PTW chambers deviate by up to 6% if their sensitive volumes are not correctly considered during the simulations. After the implementation of the sensitive volume derived from the microbeam measurements, an agreement of better than 1% between the experimental and Monte Carlo k B , Q factors for all three chambers can be achieved. Detailed analysis reveals that the stem of the PTW chambers could give rise to a shielding effect reducing the number of secondary electrons entering the air cavity in the presence of magnetic field. However, the magnetic field dependence of their path length within the air cavity is shown to be weaker than for the SNC125c chamber, where the length of the air cavity is larger than its diameter. For this chamber it is shown that the number of electrons and their path lengths in the cavity depend stronger on the magnetic field. DISCUSSION AND CONCLUSION: For clinical measurements up to 1.5 T, the required k B , Q corrections of the three chambers could be kept within 3% in both the investigated chamber orientations. The results reiterate the importance of considering the sensitive volume of fully guarded chambers, even for the investigated compact chambers, in the Monte Carlo simulations of chamber response in magnetic field. The resulting magnetic field-dependent dose response has been demonstrated to depend on the chamber construction, such as the ratio between length and the diameter of the air cavity as well as the design of the chamber stem.


Assuntos
Campos Magnéticos , Radiometria , Elétrons , Humanos , Método de Monte Carlo , Fótons , Prótons
14.
Med Phys ; 48(2): 819-830, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33251606

RESUMO

PURPOSE: The ion collection efficiency of vented ionization chambers has been investigated in an ultra-high dose-per-pulse (DPP) electron beam. The role of the chamber design and the electric field strength in the sensitive air volume have been evaluated. METHODS: An advanced Markus chamber and three specially designed parallel plate air-filled ionization chambers (EWC: End Window Chamber) with varying electrode distance of 0.5, 1, and 2 mm have been investigated. Their ion collection efficiencies were determined experimentally using two methods: extrapolation of Jaffé plots and comparison against a DPP-independent reference detector. The latter was achieved by calibrating a current transformer against alanine dosimeters. All measurements were performed in a 24 MeV electron beam with DPP values between 0.01 and 3 Gy. Additionally, the numerical approach introduced by Gotz et al. was implemented taking into account space charge effects at these ultra-high DPPs. The method has been extended to obtain time-resolved and position-dependent electric field distortions within the air cavity. RESULTS: The ion collection efficiency of the investigated ionization chambers drops significantly in the ultra-high DPP range. The extent of this drop is dependent on the electrode distance, the applied chamber voltage and thus the field strength in the sensitive air volume. For the Advanced Markus chamber, a good agreement between the experimental, numerical and the results of Petersson et al. could be shown. Using the three EWCs with different electrode spacing, an improvement of the ion collection efficiency and a reduction of the polarity effect with decreasing electrode distance could be demonstrated. Furthermore, the results revealed that the determination of the ion collection efficiency from the Jaffé plots and therefore also from two-voltage method typically underestimate the ion collection efficiency in the region of high dose-per-pulse (3 to 130 mGy) and overestimate the ion collection efficiency at ultra-high dose-per-pulse (>1 Gy per pulse). CONCLUSIONS: In this work, the ion collection efficiency determined with different methods and ionization chambers have been compared and discussed. As expected, an increase of the electric field in the ionization chamber, either by applying a higher bias voltage or a reduction of the electrode distance, improves the ion collection efficiency and also reduces the polarity effect. For the Advanced Markus chamber, the experimental results obtained by comparison against a reference agree well with the numerical solution. Based on these results, it seems possible to keep the recombination loss less than or equal to 5% up to a dose-per-pulse of 3 Gy with an appropriately designed ionization chamber, which corresponds to the level accepted in conventional radiotherapy dosimetry protocols.


Assuntos
Elétrons , Radiometria , Planejamento da Radioterapia Assistida por Computador
15.
Med Phys ; 47(12): 6509-6518, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33074591

RESUMO

PURPOSE: This study aims to investigate the dose response of diode-type detectors in the presence of strong magnetic field and to understand the underlying mechanisms leading to the observed magnetic field dependence by close examinations on the role of the detector's design. MATERIALS AND METHODS: Three clinical diode-type detectors (PTW microSilicon type 60023, PTW microDiamond type 60019, and IBA Razor diode) have been studied. Measurements were performed at the linear accelerator experimental facility of the German National Metrology Institute (PTB, Braunschweig) with electromagnets up to 1.4 T to obtain the magnetic field correction factors k B , Q . The experimental results were compared to Monte Carlo simulations. Stepwise modifications of the detectors' models were performed to characterize the contributions of the structural components toward the magnetic field-dependent dose response. Additionally, systematic Monte Carlo study was conducted to elucidate the influence of the structural layers with varying density located above and beneath the detector's sensitive volume. RESULTS: The dose response of all investigated detectors decreases with magnetic field. As a result, the associated k B , Q factors increase by approximately 10% for the PTW detectors, and by 5% for the IBA Razor diode at 1.5 T. The sensitive volume itself was shown to cause negligible effect but the diode substrate with enhanced density situated directly below the sensitive volume contributes strongest to the observed magnetic field dependence. Systematic simulations revealed that k B , Q increases with magnetic field if the density of the structural layer located beneath the sensitive volume is higher than that of normal water (>1 g/cm3 ). In the case where the layer consists of low-density water (1.2 mg/cm3 ), k B , Q decreases with the magnetic field strength. On the contrary , if the structural layer with varying density is situated above the sensitive volume, the reversed effect could be observed. DISCUSSION AND CONCLUSION: The experimental and Monte Carlo results demonstrated that the dose response of the investigated diode-type detectors decreases in magnetic field. This observation can be generally attributed to the common construction of diode-type detectors, where structural components with enhanced density, for example the diode substrate, are situated below the sensitive volume. The results provide deeper insights into the behavior of clinical diode detectors when used in strong magnetic field.


Assuntos
Aceleradores de Partículas , Radiometria , Campos Magnéticos , Método de Monte Carlo , Fótons
16.
Med Phys ; 47(11): 5890-5905, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32989779

RESUMO

PURPOSE: Beam quality correction factors provided in current codes of practice for proton beams are approximated using the water-to-air mass stopping power ratio and by assuming the proton beam quality related perturbation correction factors to be unity. The aim of this work is to use Monte Carlo simulations to calculate energy dependent beam quality and perturbation correction factors for a set of nine ionization chambers in proton beams. METHODS: The Monte Carlo code EGSnrc was used to determine the ratio of the absorbed dose to water and the absorbed dose to the sensitive air volume of ionization chambers f Q 0 related to the reference photon beam quality (60 Co). For proton beams, the quantity f Q was simulated with GATE/Geant4 for five monoenergetic beam energies between 70 MeV and 250 MeV. The perturbation correction factors for the air cavity, chamber wall, chamber stem, central electrode, and displacement effect in proton radiation were investigated separately. Additionally, the correction factors of cylindrical chambers were investigated with and without consideration of the effective point of measurement. RESULTS: The perturbation factors p Q were shown to deviate from unity for the investigated chambers, contradicting the assumptions made in dosimetry protocols. The beam quality correction factors for both plane-parallel and cylindrical chambers positioned with the effective point of measurement at the measurement depth were constant within 0.8%. An increase of the beam quality correction factors determined for cylindrical ionization chambers placed with their reference point at the measurement depth with decreasing energy is attributed to the displacement perturbation correction factors p dis , which were up to 1.045 ± 0.1% for the lowest energy and 1.005 ± 0.1% for the highest energy investigated. Besides p dis , the largest perturbation was found for the chamber wall where the smallest p wall determined was 0.981 ± 0.3%. CONCLUSIONS: Beam quality correction factors applied in dosimetry with cylindrical chambers in monoenergetic proton beams strongly depend on the positioning method used. We found perturbation correction factors different from unity. Consequently, the approximation of ionization chamber perturbations in proton beams by the respective water-to-air mass stopping power ratio shall be revised.


Assuntos
Prótons , Radiometria , Método de Monte Carlo , Radiação Ionizante , Eficiência Biológica Relativa
17.
J Appl Clin Med Phys ; 21(10): 69-79, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32797670

RESUMO

PURPOSE: This study evaluates the clinical use of the RUBY modular QA phantom for linac QA to validate the integrity of IGRT workflows including the congruence of machine isocenter, imaging isocenter, and room lasers. The results have been benchmarked against those obtained with widely used systems. Additionally, the RUBY phantom has been implemented to perform system QA (End-to-End testing) from imaging to radiation for IGRT-based VMAT and stereotactic radiations at an Elekta Synergy linac. MATERIAL AND METHODS: The daily check of IGRT workflow was performed using the RUBY phantom, the Penta-Guide, and the STEEV phantom. Furthermore, Winston-Lutz tests was carried out with the RUBY phantom and a ball-bearing phantom to determine the offsets and the diameters of the isospheres of gantry, collimator, and couch rotations, with respect to the room lasers and kV-imaging isocenter. System QA was performed with the RUBY phantom and STEEV phantom for eight VMAT treatment plans. Additionally, the visibility of the embedded objects within these phantoms in the images and the results of CT and MR image fusions were evaluated. RESULTS: All systems used for daily QA of IGRT workflows show comparable results. Calculated shifts based on CBCT imaging agree within 1 mm to the expected values. The results of the Winston-Lutz test based on kV imaging (2D planar and CBCT) or room lasers are consistent regardless of the system tested. The point dose values in the RUBY phantom agree to the expected values calculated using algorithms in Masterplan and Monte Carlo engine in Monaco within 3% of the clinical acceptance criteria. CONCLUSION: All the systems evaluated in this study yielded comparable results in terms of linac QA and system QA procedures. A system QA protocol has been derived using the RUBY phantom to check the IGRT-based VMAT and stereotactic radiations workflow at an Elekta Synergy linac.


Assuntos
Radiocirurgia , Humanos , Mônaco , Aceleradores de Partículas , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde
18.
Med Phys ; 47(9): 4589-4601, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32574383

RESUMO

PURPOSE: The introduction of advanced treatment techniques in proton therapy, such as intensity-modulated proton therapy, leads to an increased need for patient-specific quality assurance, especially an accurate treatment plan verification becomes inevitable. In this study, signal theoretical analysis of dose distributions in scanned proton therapy is performed to investigate the feasibility and limits of two-dimensional (2D) detector arrays for treatment plan verification. METHODS: 2D detector arrays are characterized by two main aspects: the distance between the single detectors on the array or the sampling frequency; and the lateral response functions of a single detector. The analysis is based on single spots, reference fields and on measured and calculated dose distributions of typical intensity-modulated proton therapy treatment plans with and without range shifter. Measurements were performed with Gafchromic EBT3 films (Ashland Speciality Ingredients G.P., Bridgewater, NJ, USA), the MatriXX PT detector array (IBA Dosimetry, Schwarzenbruck, Germany) and the OCTAVIUS detector array 1500XDR (PTW-Freiburg, Germany) at an IBA Proteus PLUS proton therapy system (Ion Beam Applications, Louvain-la-Neuve, Belgium). Dose calculations were performed with the treatment planning system RayStation 6 or 8 (RaySearch Laboratories, Sweden). RESULTS: The Fourier analysis of the data of the treatment planning system and film measurements show maximum frequencies of 0.06/mm for the plan with range shifter and 0.083/mm for the plan without range shifter. According to the Nyquist theorem, this corresponds to minimum required sampling distances of 8.3 and 6 mm, respectively. By comparison, the sampling distances of the arrays of 7.6 mm (MatriXX PT) and 7.1 mm (OD1500XDR) are sufficient to reconstruct the dose distributions adequately from measurements if range shifters are used, whereas some fields of the plans without range shifter violated the Nyquist requirement. The lateral dose response functions of the single detectors within the arrays have clearly higher frequencies than the treatment plans and thus the volume effect only slightly influences the measurements. Consequently, the array measurements show high gamma passing rates with at least 96 % and a good agreement between the investigated line profiles. CONCLUSION: The results indicate that the detector dimensions and sampling distances of the arrays are in most studied cases adequate not to substantially influence the measurement process when they are used for analyzing typical intensity-modulated proton therapy treatment plans. Nevertheless, clinical conditions have been identified, for instance treatment plans without range shifter, under which the Nyquist theorem is violated such that a full representation of the dose distributions with the measurements is not feasible. In these cases, analysis of measurements is limited to pointwise comparisons.


Assuntos
Terapia com Prótons , Radioterapia de Intensidade Modulada , Alemanha , Humanos , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Suécia
19.
Z Med Phys ; 30(4): 300-304, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32278506

RESUMO

Accurate ionization chamber measurements of the absorbed dose to water require the correction of incomplete collection of charges created within the chamber volume. According to current dosimetry protocols such as the TRS-398 or the DIN 6800-2, incomplete charge collection is accounted for by the correction factor ks, which can be determined numerically or experimentally. The method proposed by Burns & McEwen (Phys. Med. Biol., 1998) was used in this study to determine the coefficients γ and δ used for the calculation of the correction factor ks of three ionization chambers, the SNC 125c, the SNC 600c and the SNC 350p (all Sun Nuclear Corp., Melbourne, Florida) for an absorbed dose to water range of 0.2mGy to 1.6mGy per pulse in pulsed photon beams. The shift of the effective point of measurement from the reference point Δz and the correction factor kr were determined for the SNC 350p according to the draft DIN 6800-2:2019-07.


Assuntos
Fótons , Radiometria/instrumentação , Aceleradores de Partículas , Água
20.
Med Phys ; 47(7): 3165-3173, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32196683

RESUMO

PURPOSE: The aim of this study is the experimental and Monte Carlo-based determination of small field correction factors for the unshielded silicon detector microSilicon for a standard linear accelerator as well as the Cyberknife System. In addition, a detailed Monte Carlo analysis has been performed by modifying the detector models stepwise to study the influences of the detector's components. METHODS: Small field output correction factors have been determined for the new unshielded silicon diode detector, microSilicon (type 60023, PTW Freiburg, Germany) as well as for the predecessors Diode E (type 60017, PTW Freiburg, Germany) and Diode SRS (type 60018, PTW Freiburg, Germany) for a Varian TrueBeam linear accelerator at 6 MV and a Cyberknife system. For the experimental determination, an Exradin W1 scintillation detector (Standard Imaging, Middleton, USA) has been used as reference. The Monte Carlo simulations have been performed with EGSnrc and phase space files from IAEA as well as detector models according to manufacturer blueprints. To investigate the influence of the detector's components, the detector models have been modified stepwise. RESULTS: The correction factors for the smallest field size investigated at the TrueBeam linear accelerator (equivalent dosimetric square field side length Sclin  = 6.3 mm) are 0.983 and 0.939 for the microSilicon and Diode E, respectively. At the Cyberknife system, the correction factors of the microSilicon are 0.967 at the smallest 5-mm collimator compared to 0.928 for the Diode SRS. Monte Carlo simulations show comparable results from the measurements and literature. CONCLUSION: The microSilicon (type 60023) detector requires less correction than its predecessors, Diode E (type 60017) and Diode SRS (type 60018). The detector housing has been demonstrated to cause the largest perturbation, mainly due to the enhanced density of the epoxy encapsulation surrounding the silicon chip. This density has been rendered more water equivalent in case of the microSilicon detector to minimize the associated perturbation. The sensitive volume itself has been shown not to cause observable field size-dependent perturbation except for the volume-averaging effect, where the slightly larger diameter of the sensitive volume of the microSilicon (1.5 mm) is still small at the smallest field size investigated with corrections <2%. The new microSilicon fulfils the 5% correction limit recommended by the TRS 483 for output factor measurements at all conditions investigated in this work.


Assuntos
Fótons , Radiometria , Alemanha , Método de Monte Carlo , Aceleradores de Partículas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...