Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Water Res ; 257: 121531, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701553

RESUMO

The development of continuous flow reactors (CFRs) employing aerobic granular sludge (AGS) for the retrofit of existing wastewater treatment plants (WWTPs) using a continuous-flow activated sludge (CFAS) system has garnered increasing interest. This follows the worldwide adoption of AGS technology in sequencing batch reactors (SBRs). The better settleability of AGS compared to AS allows for process intensification of existing wastewater treatment plants without the difficult conversion of often relatively shallow CFRs to deeper AGS-SBRs. To retrofit existing CFAS systems with AGS, achieving both increased hydraulic capacity and enhanced biological nutrient removal necessitates the formation of granular sludge based on the same selective pressures applied in AGS-SBRs. Previous efforts have focussed mainly on the selective wasting of flocculent sludge and retaining granular sludge to drive aerobic granulation. In this study a pilot-scale CFR was developed to best mimic the implementation of the granulation mechanisms of full-scale AGS-SBRs. The pilot-scale reactor was fed with pre-settled municipal wastewater. We established metrics to assess the degree to which the proposed mechanisms were implemented in the pilot-scale CFR and compared them to data from full-scale AGS-SBRs, specifically with respect to the anaerobic distribution of granule forming substrates (GFS). The selective pressures for granular sludge formation were implemented through inclusion of anaerobic upflow selectors with a water depth of 2.5 meters, which yielded a sludge with properties similar to AGS from full-scale SBRs. In comparison to the CFAS system at Harnaschpolder WWTP treating the same pre-settled wastewater, a more than twofold increase in volumetric removal capacity for both phosphorus and nitrogen was achieved. The use of a completely mixed anaerobic selector, as opposed to an anaerobic upflow selector, caused a shift in EBPR activity from the largest towards the smallest size class, while nitrification was majorly unaffected. Anaerobic selective feeding via bottom-feeding is, therefore, favorable for the long-term stability of AGS, especially for less acidified wastewater. The research underlines the potential of AGS for enhancing the hydraulic and biological treatment capacity of existing CFAS systems.


Assuntos
Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Aerobiose , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Projetos Piloto
2.
Biotechnol Bioeng ; 109(4): 1031-42, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22095039

RESUMO

A 3D Biofilm model, appropriate for complex porous media support structures, is successfully modified such that non-zero permeability of biofilms structures is enabled. A systematic study is then conducted into the influence of biofilm permeability on overall biomass growth rate. This reveals a significant influence at large biofilm concentrations; even when the permeability of the biomass is 1.25% of that of the free pore space, biomass accumulation increased by a factor of ∼3 over 40 h. The effect is shown to be retained when allowing for biomass detachment or erosion as a consequence of adjacent velocity shear. We conclude that biofilm permeability should be included in biofilm models and that further experimental work is required to better describe the link between biofilm permeability and local microstructure.


Assuntos
Biofilmes/crescimento & desenvolvimento , Simulação por Computador , Modelos Biológicos , Biomassa , Hidrodinâmica , Microesferas , Permeabilidade , Porosidade , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA