Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020171

RESUMO

Giant exoplanets orbiting close to their host stars are unlikely to have formed in their present configurations1. These 'hot Jupiter' planets are instead thought to have migrated inward from beyond the ice line and several viable migration channels have been proposed, including eccentricity excitation through angular-momentum exchange with a third body followed by tidally driven orbital circularization2,3. The discovery of the extremely eccentric (e = 0.93) giant exoplanet HD 80606 b (ref. 4) provided observational evidence that hot Jupiters may have formed through this high-eccentricity tidal-migration pathway5. However, no similar hot-Jupiter progenitors have been found and simulations predict that one factor affecting the efficacy of this mechanism is exoplanet mass, as low-mass planets are more likely to be tidally disrupted during periastron passage6-8. Here we present spectroscopic and photometric observations of TIC 241249530 b, a high-mass, transiting warm Jupiter with an extreme orbital eccentricity of e = 0.94. The orbit of TIC 241249530 b is consistent with a history of eccentricity oscillations and a future tidal circularization trajectory. Our analysis of the mass and eccentricity distributions of the transiting-warm-Jupiter population further reveals a correlation between high mass and high eccentricity.

2.
Nature ; 616(7957): 461-464, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36858076

RESUMO

On 26 September 2022, the Double Asteroid Redirection Test (DART) spacecraft struck Dimorphos, a satellite of the asteroid 65803 Didymos1. Because it is a binary system, it is possible to determine how much the orbit of the satellite changed, as part of a test of what is necessary to deflect an asteroid that might threaten Earth with an impact. In nominal cases, pre-impact predictions of the orbital period reduction ranged from roughly 8.8 to 17 min (refs. 2,3). Here we report optical observations of Dimorphos before, during and after the impact, from a network of citizen scientists' telescopes across the world. We find a maximum brightening of 2.29 ± 0.14 mag on impact. Didymos fades back to its pre-impact brightness over the course of 23.7 ± 0.7 days. We estimate lower limits on the mass contained in the ejecta, which was 0.3-0.5% Dimorphos's mass depending on the dust size. We also observe a reddening of the ejecta on impact.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA