Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
BMC Chem ; 13(1): 22, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31384771

RESUMO

BACKGROUND: Mangroves plants and their endophytes represent a natural source of novel and bioactive compounds. In our ongoing research on mangrove endophytes from the Panamanian Pacific Coast, we have identified several bioactive endophytic fungi. From these organisms, an isolate belonging to the genus Zasmidium (Mycosphaerellaceae) showed 91.3% of inhibition against α-glucosidase enzyme in vitro. RESULTS: Zasmidium sp. strain EM5-10 was isolated from mature leaves of Laguncularia racemosa, and its crude extract showed good inhibition against α-glucosidase enzyme (91.3% of inhibition). Bioassay-guided fractionation of the crude extract led to obtaining two active fractions: L (tripalmitin) and M (Fungal Tryglicerides Mixture). Tripalmitin (3.75 µM) showed better inhibitory activity than acarbose (positive control, IC50 217.71 µM). Kinetic analysis established that tripalmitin acted as a mixed inhibitor. Molecular docking and molecular dynamics simulations predicted that tripalmitin binds at the same site as acarbose and also to an allosteric site in the human intestinal α-glucosidase (PDB: 3TOP). CONCLUSIONS: Zasmidium sp. strain EM5-10 represents a new source of bioactive substances that could possess beneficial properties for human health.

2.
Chem Cent J ; 9(1): 53, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26435737

RESUMO

BACKGROUND: Panama has an extensive mangrove area and it is one of the countries with the highest biodiversity in America. Mangroves are widely used in traditional medicine, nevertheless, there are very few studies that validates their medicinal properties in America. Given the urgent need for therapeutic options to treat several diseases of public health importance, mangrove ecosystem could be an interesting source of new bioactive molecules. This study was designed to evaluate the potential of Pelliciera rhizophorae as a source of bioactive compounds. RESULTS: The present investigation was undertaken to explore the possible antiparasitic potential and α-glucosidase inhibition by compounds derived from the Panamanian mangrove Pelliciera rhizophorae. Bioassay-guided fractionation of the crude extract led to the isolation of ten chemical compounds: α-amyrine (1), ß-amyrine (2), ursolic acid (3), oleanolic acid (4), betulinic acid (5), brugierol (6) iso-brugierol (7), kaempferol (8), quercetin (9), and quercetrin (10). The structures of these compounds were established by spectroscopic analyses including APCI-HR-MS and NMR. Compounds 4 (IC50 = 5.3 µM), 8 (IC50 = 22.9 µM) and 10 (IC50 = 3.4 µM) showed selective antiparasitic activity against Leishmania donovani, while compounds 1 (IC50 = 19.0 µM) and 5 (IC50 = 18.0 µM) exhibited selectivity against Tripanosoma cruzi and Plasmodium falciparum, respectively. Moreover, compounds 1-5 inhibited α-glucosidase enzyme in a concentration-dependent manner with IC50 values of 1.45, 0.02, 1.08, 0.98 and 2.37 µM, respectively. Their inhibitory activity was higher than that of antidiabetic drug acarbose (IC50 217.7 µM), used as a positive control. Kinetic analysis established that the five compounds acted as competitive inhibitors. Docking analysis predicted that all triterpenes bind at the same site that acarbose in the human intestinal α-glucosidase (PDB: 3TOP). CONCLUSIONS: Three groups of compounds were isolated in this study (triterpenes, flavonols and dithiolanes). Triterpenes and flavones showed activity in at least one bioassay (antiparasitic or α-glucosidase). In addition, only the pentacyclic triterpenes exhibited a competitive type of inhibition against α-glucosidase.

3.
Mar Drugs ; 13(4): 2010-29, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25854646

RESUMO

Breast cancer resistance protein (BCRP) is a protein belonging to the ATP-binding cassette (ABC) transporter superfamily that has clinical relevance due to its multi-drug resistance properties in cancer. BCRP can be associated with clinical cancer drug resistance, in particular acute myelogenous or acute lymphocytic leukemias. The overexpression of BCRP contributes to the resistance of several chemotherapeutic drugs, such as topotecan, methotrexate, mitoxantrone, doxorubicin and daunorubicin. The Food and Drugs Administration has already recognized that BCRP is clinically one of the most important drug transporters, mainly because it leads to a reduction of clinical efficacy of various anticancer drugs through its ATP-dependent drug efflux pump function as well as its apparent participation in drug resistance. This review article aims to summarize the different research findings on marine natural products with BCRP inhibiting activity. In this sense, the potential modulation of physiological targets of BCRP by natural or synthetic compounds offers a great possibility for the discovery of new drugs and valuable research tools to recognize the function of the complex ABC-transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Organismos Aquáticos/química , Produtos Biológicos/farmacologia , Descoberta de Drogas , Proteínas de Neoplasias/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Alcaloides/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/uso terapêutico , Transporte Biológico/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Descoberta de Drogas/tendências , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Estrutura Molecular , Terapia de Alvo Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Conformação Proteica
4.
Mar Drugs ; 12(1): 525-46, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24451193

RESUMO

P-glycoprotein (P-gp) is a protein belonging to the ATP-binding cassette (ABC) transporters superfamily that has clinical relevance due to its role in drug metabolism and multi-drug resistance (MDR) in several human pathogens and diseases. P-gp is a major cause of drug resistance in cancer, parasitic diseases, epilepsy and other disorders. This review article aims to summarize the research findings on the marine natural products with P-glycoprotein inhibitor properties. Natural compounds that modulate P-gp offer great possibilities for semi-synthetic modification to create new drugs and are valuable research tools to understand the function of complex ABC transporters.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Produtos Biológicos/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Animais , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Bactérias/química , Cianobactérias/química , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Poríferos/fisiologia , Água do Mar/microbiologia , Urocordados/fisiologia
5.
J Nat Prod ; 76(11): 2026-33, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24164245

RESUMO

A dark brown tuft-forming cyanobacterium, morphologically resembling the genus Symploca, was collected during an expedition to the Coiba National Park, a UNESCO World Heritage Site on the Pacific coast of Panama. Phylogenetic analysis of its 16S rRNA gene sequence indicated that it is 4.5% divergent from the type strain for Symploca and thus is likely a new genus. Fractionation of the crude extract led to the isolation of a new cytotoxin, designated santacruzamate A (1), which has several structural features in common with suberoylanilide hydroxamic acid [(2), SAHA, trade name Vorinostat], a clinically approved histone deacetylase (HDAC) inhibitor used to treat refractory cutaneous T-cell lymphoma. Recognition of the structural similarly of 1 and SAHA led to the characterization of santacruzamate A as a picomolar level selective inhibitor of HDAC2, a Class I HDAC, with relatively little inhibition of HDAC4 or HDAC6, both Class II HDACs. As a result, chemical syntheses of santacruzamate A as well as a structurally intriguing hybrid molecule, which blends aspects of both agents (1 and 2), were achieved and evaluated for their HDAC activity and specificity.


Assuntos
Carbamatos/farmacologia , Cianobactérias/química , Citotoxinas/isolamento & purificação , Inibidores de Histona Desacetilases/isolamento & purificação , Inibidores de Histona Desacetilases/farmacologia , Carbamatos/química , Carbamatos/isolamento & purificação , Cianobactérias/genética , Citotoxinas/química , Citotoxinas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Inibidores de Histona Desacetilases/química , Humanos , Ácidos Hidroxâmicos/farmacologia , Leishmania donovani/efeitos dos fármacos , Linfoma de Células T , Estrutura Molecular , Panamá , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , RNA Ribossômico 16S/genética , Relação Estrutura-Atividade , Trypanosoma cruzi/efeitos dos fármacos , Vorinostat
6.
J Med Chem ; 53(10): 4187-97, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20441198

RESUMO

Leishmaniasis is a debilitating disease caused by protozoan parasites of the genus Leishmania, which affects an estimated 12 million people worldwide. The discovery of new lead compounds for leishmaniasis is therefore a pressing concern for global health programs. The organic extract of a Panamanian collection of the marine cyanobacterium Lyngbya majuscula showed strong in vitro activity in two complementary screens against the tropical parasite Leishmania donovani, the causative agent of visceral leishmaniasis. Chromatographic separation of this complex mixture led to the isolation of the highly N-methylated linear lipopeptides, almiramides A-C (1-3). Comparison with the biological activities of a number of related metabolites and semisynthetic derivatives revealed key features required for activity and afforded one new compound (11) with superior in vitro activity. Subsequent synthesis of a library of simplified analogues led to the discovery of several compounds with improved therapeutic indices to the natural products.


Assuntos
Antiprotozoários/isolamento & purificação , Cianobactérias/química , Leishmania donovani/efeitos dos fármacos , Lipopeptídeos/isolamento & purificação , Antiprotozoários/química , Antiprotozoários/farmacologia , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Conformação Molecular , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...