Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38553405

RESUMO

Musculoskeletal research should synergistically investigate bone and muscle to inform approaches for maintaining mobility and to avoid bone fractures. The relationship between sarcopenia and osteoporosis, integrated in the term 'osteosarcopenia', is underscored by the close association shown between these two conditions in many studies, whereby one entity emerges as a predictor of the other. In a recent workshop of Working Group (WG) 2 of the EU Cooperation in Science and Technology (COST) Action 'Genomics of MusculoSkeletal traits Translational Network' (GEMSTONE) consortium (CA18139), muscle characterization was highlighted as being important, but currently under-recognized in the musculoskeletal field. Here, we summarize the opinions of the Consortium and research questions around translational and clinical musculoskeletal research, discussing muscle phenotyping in human experimental research and in two animal models: zebrafish and mouse.

2.
World J Diabetes ; 14(11): 1710-1716, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38077801

RESUMO

BACKGROUND: The correction and control of chronic hyperglycemia are the management goals of patients living with diabetes. Chronic hyperglycemia is the main factor inducing diabetes-related complications. However, in certain situations, the rapid and intense correction of chronic hyperglycemia can paradoxically favor the onset of microvascular complications. CASE SUMMARY: In this case report, we describe the case of a 25-year-old woman living with type 1 diabetes since the age of 9 years. Her diabetes was chronic and unstable but without complications. During an unplanned pregnancy, her diabetes was intensely managed with the rapid correction of her hyperglycemia. However, over the following 2 years, she developed numerous degenerative microvascular complications: Charcot neuroarthropathy with multiple joint involvement, severe proliferative diabetic retinopathy, gastroparesis, bladder voiding disorders, and end-stage renal failure requiring hemodialysis. CONCLUSION: In the literature to date, the occurrence of multiple microvascular complications following the rapid correction of chronic hyperglycemia has been rarely described in the same individual.

3.
Diabetes Metab ; 49(6): 101486, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37858921

RESUMO

Many studies have clearly established that chronic psychosocial stress may sustainably worsen glycemic control in patients with type 1 diabetes mellitus (T1DMM), thus promoting diabetes complications. Chronic psychosocial stress may be due to: i) the long-term accumulation of stressful life events that require readjustment on the part of the individual (loosing friends, changing schools), and/or ii) exposure to severe chronic stressors (persistent difficulties and adversities of life). Whatever the reason, many studies have clearly established a positive correlation between chronic psychosocial stress and HbA1c levels. However, a small fraction of patients is minimally affected or not affected at all by chronic psychosocial stress. Conversely, positive life events can substantially improve glycemic control. Recent evidence suggests the existence of subpopulations that differ in personality traits, neurohormonal regulatory responses, and food intake behavior (increased or decreased). Better characterization of the clinical and neurohormonal differences between these subpopulations may help develop personalized treatment strategies in the future. In the near future, psychotherapeutic support and automated insulin delivery (AID) could alleviate chronic stress, prevent worsening glycemic control, and ease the burden of diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/psicologia , Glicemia , Controle Glicêmico , Estresse Psicológico , Emoções
4.
Pharmaceutics ; 15(7)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37513978

RESUMO

Diabetes complications can be related to the long duration of the disease or chronic hyperglycemia. The follow-up of diabetic patients is based on the control of chronic hyperglycemia, although this correction, if obtained rapidly in people living with severe chronic hyperglycemia, can paradoxically interfere with the disease or even induce complications. We reviewed the literature describing the impact of the rapid and intense treatment of hyperglycemia on diabetic complications. The literature review showed that worsening complications occurred significantly in diabetic microangiopathy with the onset of specific neuropathy induced by the correction of diabetes. The results for macroangiopathy were somewhat mixed with the intensive and rapid correction of chronic hyperglycemia having a neutral impact on stroke and myocardial infarction but a significant increase in cardiovascular mortality. The management of diabetes has now entered a new era with new therapeutic molecules, such as gliflozin for patients living with type 2 diabetes, or hybrid insulin delivery systems for patients with insulin-treated diabetes. Our manuscript provides evidence in support of these personalized and progressive algorithms for the control of chronic hyperglycemia.

5.
Front Cardiovasc Med ; 9: 811458, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665250

RESUMO

Preoperative peak oxygen uptake ( V . O2peak ) and ventilatory efficiency ( V . E / V . CO2slope) are related to the vital prognosis after cardiac transplantation (HTx). The objective of our study was to evaluate the effects of exercise-based cardiac rehabilitation (ECR) program on the preoperative exercise capacity of a HTx candidate. A male patient, aged 50-55 years, with chronic heart failure was placed on the HTx list and performed 12 weeks of intensive ECR (5 sessions-a-week). Our results showed that the cardiac index continuously increased between the onset and the end of ECR (1.40 vs. 2.53 L.min-1.m2). The first 20 sessions of ECR induced a V . O2peak increase (15.0 vs. 19.3 ml.min-1.kg-1, corresponding to 42.0 and 53.0% of its maximal predicted values, respectively). The peak V . O2 plateaued between the 20th and the 40th ECR session (19.3 vs. 19.4 ml.min-1.kg-1) then progressively increased until the 60th ECR session to reach 25.7 ml.min-1.kg-1, i.e., 71.0% of the maximal predicted values. The slope of V . E/ V . CO2 showed a biphasic response during the ECR program, with an increase between the onset and the 20th ECR session (58.02 vs. 70.48) and a decrease between the 20th and the 40th ECR session (70.48 vs. 40.94) to reach its minimal value at the 60th ECR session (31.97). After the first 40 sessions of the ECR program, the Seattle Heart Failure Model score predicted median survival time was estimated at 7.2 years. In conclusion, the improvement in exercise capacity and cardiorespiratory function following the ECR helped delay the heart transplant surgery in our patient awaiting heart transplantation.

6.
Medicina (Kaunas) ; 58(4)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35454393

RESUMO

The RANKL-GLYC study aims to explore the impact of the rapid correction of chronic hyperglycemia on the receptor activator of nuclear factor-kappa B ligand (RANKL) and its antagonist osteoprotegerin (OPG). RANKL and OPG are considered the main factors in the pathophysiology of Charcot neuroarthropathy, a devastating complication of the joints that remains poorly understood. The study began recruiting patients in September 2021 and ends in June 2022; the final study results are scheduled for January 2023.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Doença Crônica , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Hiperglicemia/tratamento farmacológico , NF-kappa B , Osteoprotegerina , Ligante RANK , Receptor Ativador de Fator Nuclear kappa-B
7.
Nat Prod Res ; 36(6): 1668-1671, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33706628

RESUMO

Three known compounds were isolated from Virgaria nigra CF-231658; 2,7-dihydroxy naphthalene (1), virgaricin B (2) and virgaricin (3). The isolated compounds was obtained from liquid-state and agar-supported fermentation using Amberlite XAD-16 solid-phase extraction during the cultivation step. Their structures were elucidated on the basis of 1D and 2D NMR as well as HRMS spectroscopic analyses. The isolated compounds were examined for their ability to inhibit elastase using normal human diploid fibroblasts. Compound 2 displayed the most potent activity with 76.7 ± 2.12% inhibition of the enzyme activity at 5 µM concentration.


Assuntos
Ascomicetos , Ascomicetos/química , Fermentação , Humanos , Lactamas/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Elastase Pancreática/antagonistas & inibidores
8.
Front Endocrinol (Lausanne) ; 12: 720728, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925226

RESUMO

A synoptic overview of scientific methods applied in bone and associated research fields across species has yet to be published. Experts from the EU Cost Action GEMSTONE ("GEnomics of MusculoSkeletal Traits translational Network") Working Group 2 present an overview of the routine techniques as well as clinical and research approaches employed to characterize bone phenotypes in humans and selected animal models (mice and zebrafish) of health and disease. The goal is consolidation of knowledge and a map for future research. This expert paper provides a comprehensive overview of state-of-the-art technologies to investigate bone properties in humans and animals - including their strengths and weaknesses. New research methodologies are outlined and future strategies are discussed to combine phenotypic with rapidly developing -omics data in order to advance musculoskeletal research and move towards "personalised medicine".


Assuntos
Osso e Ossos/metabolismo , Genômica/métodos , Fenômenos Fisiológicos Musculoesqueléticos/genética , Animais , Osso e Ossos/patologia , Redes Reguladoras de Genes/fisiologia , Humanos , Camundongos , Modelos Animais , Fenótipo , Proteômica/métodos , Peixe-Zebra
9.
Mar Drugs ; 19(7)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206861

RESUMO

Solid-phase extraction embedded dialysis (SPEED technology) is an innovative procedure developed to physically separate in-situ, during the cultivation, the mycelium of filament forming microorganisms, such as actinomycetes and fungi, and the XAD-16 resin used to trap the secreted specialized metabolites. SPEED consists of an external nylon cloth and an internal dialysis tube containing the XAD resin. The dialysis barrier selects the molecular weight of the trapped compounds, and prevents the aggregation of biomass or macromolecules on the XAD beads. The external nylon promotes the formation of a microbial biofilm, making SPEED a biofilm supported cultivation process. SPEED technology was applied to the marine Streptomyces albidoflavus 19-S21, isolated from a core of a submerged Kopara sampled at 20 m from the border of a saltwater pond. The chemical space of this strain was investigated effectively using a dereplication strategy based on molecular networking and in-depth chemical analysis. The results highlight the impact of culture support on the molecular profile of Streptomyces albidoflavus 19-S21 secondary metabolites.


Assuntos
Actinobacteria/metabolismo , Fungos/metabolismo , Streptomyces/metabolismo , Animais , Biofilmes , Extração em Fase Sólida
10.
Curr Issues Mol Biol ; 44(1): 14-30, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35723381

RESUMO

Cells have developed a highly integrated system responsible for proteome stability, namely the proteostasis network (PN). As loss of proteostasis is a hallmark of aging and age-related diseases, the activation of PN modules can likely extend healthspan. Here, we present data on the bioactivity of an extract (SA223-S2BM) purified from the strain Salinispora arenicola TM223-S2 that was isolated from the soft coral Scleronephthya lewinsohni; this coral was collected at a depth of 65 m from the mesophotic Red Sea ecosystem EAPC (south Eilat, Israel). Treatment of human cells with SA223-S2BM activated proteostatic modules, decreased oxidative load, and conferred protection against oxidative and genotoxic stress. Furthermore, SA223-S2BM enhanced proteasome and lysosomal-cathepsins activities in Drosophila flies and exhibited skin protective effects as evidenced by effective inhibition of the skin aging-related enzymes, elastase and tyrosinase. We suggest that the SA223-S2BM extract constitutes a likely promising source for prioritizing molecules with anti-aging properties.

11.
Mar Drugs ; 18(9)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911774

RESUMO

The strain Aspergillus chevalieri TM2-S6 was isolated from the sponge Axinella and identified according to internal transcribed spacer (ITS) molecular sequence homology with Aspergillus species from the section Restricti. The strain was cultivated 9 days on potato dextrose broth (PDB), and the medium evaluated as antioxidant on primary normal human dermal fibroblasts (NHDF). The cultivation broth was submitted to sterile filtration, lyophilized and used without any further processing to give the Aspergillus chevalieri TM2-S6 cultivation broth ingredient named ACBB. ACCB contains two main compounds: tetrahydroauroglaucin and flavoglaucin. Under oxidative stress, ACCB showed a significant promotion of cell viability. To elucidate the mechanism of action, the impact on a panel of hundreds of genes involved in fibroblast physiology was evaluated. Thus, ACCB stimulates cell proliferation (VEGFA, TGFB3), antioxidant response (GPX1, SOD1, NRF2), and extracellular matrix organization (COL1A1, COL3A1, CD44, MMP14). ACCD also reduced aging (SIRT1, SIRT2, FOXO3). These findings indicate that Aspergillus chevalieri TM2-S6 cultivation broth exhibits significant in vitro skin protection of human fibroblasts under oxidative stress, making it a potential cosmetic ingredient.


Assuntos
Antioxidantes/farmacologia , Aspergillus/metabolismo , Fibroblastos/efeitos dos fármacos , Gentisatos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Pele/efeitos dos fármacos , Animais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Axinella/microbiologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citoproteção , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Gentisatos/química , Gentisatos/isolamento & purificação , Humanos , Peróxido de Hidrogênio/toxicidade , Pele/metabolismo , Pele/patologia , Envelhecimento da Pele/efeitos dos fármacos
12.
Toxicol In Vitro ; 66: 104869, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32320759

RESUMO

Nowadays, there is a huge interest in natural products obtained from marine organisms that can promote human health.The aim of the present study is to evaluate for the first time, the in vitro effects of marine Aspergillus puulaauensis TM124-S4 extract against oxidative stress in human fibroblasts, and its potential as a cosmetic ingredient. The strain was isolated from the Mediterranean Sea star, Echinaster sepositus, and identified according to ITS molecular sequence homology as a member of Aspergillus section versicolores.To gain insight on the bioactivity underpinning the effects of TM124-S4 extract on oxidative stress, we examined a panel of a hundred genes as well as cell viability. Initially, Aspergillus puulaauensis TM124-S4 promoted cell viability.The change in gene transcripts revealed that Aspergillus puulaauensis TM124-S4 extracts exhibited skin protection properties by mediating cell proliferation (EPS8, GDF15, CASP7, VEGFA), antioxidant response (CAT, SOD1, TXN, GPX1), skin hydration (CD44, CRABP2, SERPINE) and DNA repair (PCNA, P21). The extract also modulated the expression of genes involved in skin pigmentation and aging (TYR, FOXO3).These findings indicate that Aspergillus puulaauensis TM124-S4 extract possesses significant in-vitro skin protection activity against induced oxidative stress.Furthermore, new insights are provided into the beneficial role of fungal bioactive compounds in skin related research.


Assuntos
Antioxidantes/farmacologia , Aspergillus , Misturas Complexas/farmacologia , Fibroblastos/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Estresse Oxidativo/efeitos dos fármacos
13.
Mar Drugs ; 17(12)2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31801271

RESUMO

The fungi Chrysosporium lobatum TM-237-S5 was isolated from the sponge Acanthella cavernosa, collected from the mesophotic coral ecosystem of the Red Sea. The strain was cultivated on a potato dextrose agar (PDA) medium, coupling solid-state fermentation and solid-state extraction (SSF/SSE) with a neutral macroreticular polymeric adsorbent XAD Amberlite resin (AMBERLITE XAD1600N). The SSF/SSE lead to high chemodiversity and productivity compared to classical submerged cultivation. Ten phenalenone related compounds were isolated and fully characterized by one-dimensional and two-dimensional NMR and HRMS. Among them, four were found to be new compounds corresponding to isoconiolactone, (-)-peniciphenalenin F, (+)-8-hydroxyscleroderodin, and (+)-8-hydroxysclerodin. It is concluded that SSF/SSE is a powerful strategy, opening a new era for the exploitation of microbial secondary metabolites.


Assuntos
Chrysosporium/metabolismo , Fenalenos/isolamento & purificação , Poríferos/microbiologia , Animais , Meios de Cultura , Ecossistema , Fermentação , Oceano Índico , Fenalenos/química , Metabolismo Secundário
14.
Front Physiol ; 10: 1258, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632295

RESUMO

Spinal Muscular Atrophy (SMA), an autosomal recessive neurodegenerative disease characterized by the loss of spinal-cord motor-neurons, is caused by mutations on Survival-of-Motor Neuron (SMN)-1 gene. The expression of SMN2, a SMN1 gene copy, partially compensates for SMN1 disruption due to exon-7 excision in 90% of transcripts subsequently explaining the strong clinical heterogeneity. Several alterations in energy metabolism, like glucose intolerance and hyperlipidemia, have been reported in SMA at both systemic and cellular level, prompting questions about the potential role of energy homeostasis and/or production involvement in disease progression. In this context, we have recently reported the tolerance of mild SMA-like mice (SmnΔ7/Δ7; huSMN2 +/+) to 10 months of low-intensity running or high-intensity swimming exercise programs, respectively involving aerobic and a mix aerobic/anaerobic muscular metabolic pathways. Here, we investigated whether those exercise-induced benefits were associated with an improvement in metabolic status in mild SMA-like mice. We showed that untrained SMA-like mice exhibited a dysregulation of lipid metabolism with an enhancement of lipogenesis and adipocyte deposits when compared to control mice. Moreover, they displayed a high oxygen consumption and energy expenditure through ß-oxidation increase yet for the same levels of spontaneous activity. Interestingly, both exercises significantly improved lipid metabolism and glucose homeostasis in SMA-like mice, and enhanced oxygen consumption efficiency with the maintenance of a high oxygen consumption for higher levels of spontaneous activity. Surprisingly, more significant effects were obtained with the high-intensity swimming protocol with the maintenance of high lipid oxidation. Finally, when combining electron microscopy, respiratory chain complexes expression and enzymatic activity measurements in muscle mitochondria, we found that (1) a muscle-specific decreased in enzymatic activity of respiratory chain I, II, and IV complexes for equal amount of mitochondria and complexes expression and (2) a significant decline in mitochondrial maximal oxygen consumption, were reduced by both exercise programs. Most of the beneficial effects were obtained with the high-intensity swimming protocol. Taking together, our data support the hypothesis that active physical exercise, including high-intensity protocols, induces metabolic adaptations at both systemic and cellular levels, providing further evidence for its use in association with SMN-overexpressing therapies, in the long-term care of SMA patients.

15.
Molecules ; 24(12)2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31208056

RESUMO

The strain Streptomyces osmaniensis CA-244599 isolated from the Comoros islands was submitted to liquid-state fermentation coupled to in situ solid-phase extraction with amberlite XAD-16 resin. Elution of the trapped compounds on the resin beads by ethyl acetate afforded seven metabolites, osmanicin (1), streptazolin (2), streptazone C (3), streptazone B1 (4), streptenol C (5), nocardamine (6) and desmethylenylnocardamine (7). Osmanicin (1) is a newly reported unusual scaffold combining streptazolin (2) and streptazone C (3) through a Diels-Alder type reaction. Experimental evidence excluded the spontaneous formation of 1 from 2 and 3. The isolated compounds were evaluated for their ability to inhibit elastase using normal human diploid fibroblasts. Compound 1 exhibited the most potent activity with an IC50 of 3.7 µM.


Assuntos
Alcaloides/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Elastase Pancreática/antagonistas & inibidores , Policetídeos/farmacologia , Streptomyces/química , Alcaloides/biossíntese , Alcaloides/química , Alcaloides/isolamento & purificação , Vias Biossintéticas , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fermentação , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Policetídeos/química , Policetídeos/isolamento & purificação , Policetídeos/metabolismo , RNA Ribossômico 16S/genética , Streptomyces/classificação , Streptomyces/genética
16.
Biophys J ; 115(11): 2114-2126, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30467026

RESUMO

Human African trypanosomiasis, or sleeping sickness, is a lethal disease caused by the protozoan parasite Trypanosoma brucei. However, although many efforts have been made to understand the biochemistry of this parasite, drug development has led to treatments that are of limited efficiency and of great toxicity. To develop new drugs, new targets must be identified, and among the several metabolic processes of trypanosomes that have been proposed as drug targets, carbohydrate metabolism (glycolysis and the pentose phosphate pathway (PPP)) appears as a promising one. As far as the PPP is concerned, a limited number of studies are related to the glucose-6-phosphate dehydrogenase. In this work, we have focused on the activity of the second PPP enzyme (6-phospho-gluconolactonase (6PGL)) that transforms 6-phosphogluconolactone into 6-phosphogluconic acid. A lactam analog of the natural substrate has been synthesized, and binding of the ligand to 6PGL has been investigated by NMR titration. The ability of this ligand to inhibit 6PGL has also been demonstrated using ultraviolet experiments, and protein-inhibitor interactions have been investigated through docking calculations and molecular dynamics simulations. In addition, a marginal inhibition of the third enzyme of the PPP (6-phosphogluconate dehydrogenase) was also demonstrated. Our results thus open new prospects for targeting T. brucei.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Inibidores Enzimáticos/farmacologia , Lactamas/farmacologia , Via de Pentose Fosfato , Fosfogluconato Desidrogenase/antagonistas & inibidores , Trypanosoma brucei brucei/enzimologia , Gluconatos/metabolismo , Glicólise , Lactamas/síntese química , Modelos Moleculares , Fosfogluconato Desidrogenase/metabolismo , Especificidade por Substrato
17.
Fitoterapia ; 131: 91-95, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30342177

RESUMO

N-myristoylation (Myr) is an eukaryotic N-terminal co- or post-translational protein modification in which the enzyme N-myristoyltransferase (NMT) transfers a fatty acid (C14:0) to the N-terminal glycine residues of several cellular key proteins. Depending on the cellular context, NMT may serve as a molecular target in anticancer or anti-infectious therapy, and drugs that inhibit this enzyme may be useful in the treatment of cancer or infectious diseases. As part of an on-going project to identify natural Homo sapiens N-myristoyltransferase 1 inhibitors (HsNMT1), two ellagitannins, punicalagin (1) and isoterchebulin (2), along with eschweilenol C (3) and ellagic acid (4) were isolated from the bark of Terminalia bentzoë (L.) L. f. subsp. bentzoë. Their structures were determined by means of spectroscopic analyses and comparison with literature data. Punicalagin (1) and isoterchebulin (2) showed significant inhibitory activity towards HsNMT1, and also against Plasmodium falciparum NMT (PfNMT) both in vitro and in cellulo, opening alternative paths for new NMT inhibitors development. This is the first report identifying natural products from a botanical source as inhibitors of HsNMT and PfNMT.


Assuntos
Aciltransferases/antagonistas & inibidores , Taninos Hidrolisáveis/farmacologia , Terminalia/química , Linhagem Celular Tumoral , França , Humanos , Taninos Hidrolisáveis/isolamento & purificação , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Casca de Planta/química , Plasmodium falciparum/efeitos dos fármacos , Reunião
18.
Front Mol Neurosci ; 10: 332, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104532

RESUMO

Amyotrophic Lateral Sclerosis is an adult-onset neurodegenerative disease characterized by the specific loss of motor neurons, leading to muscle paralysis and death. Although the cellular mechanisms underlying amyotrophic lateral sclerosis (ALS)-induced toxicity for motor neurons remain poorly understood, growing evidence suggest a defective energetic metabolism in skeletal muscles participating in ALS-induced motor neuron death ultimately destabilizing neuromuscular junctions. In the present study, we report that a specific exercise paradigm, based on a high intensity and amplitude swimming exercise, significantly improves glucose metabolism in ALS mice. Using physiological tests and a biophysics approach based on nuclear magnetic resonance (NMR), we unexpectedly found that SOD1(G93A) ALS mice suffered from severe glucose intolerance, which was counteracted by high intensity swimming but not moderate intensity running exercise. Furthermore, swimming exercise restored the highly ALS-sensitive tibialis muscle through an autophagy-linked mechanism involving the expression of key glucose transporters and metabolic enzymes, including GLUT4 and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Importantly, GLUT4 and GAPDH expression defects were also found in muscles from ALS patients. Moreover, we report that swimming exercise induced a triglyceride accumulation in ALS tibialis, likely resulting from an increase in the expression levels of lipid transporters and biosynthesis enzymes, notably DGAT1 and related proteins. All these data provide the first molecular basis for the differential effects of specific exercise type and intensity in ALS, calling for the use of physical exercise as an appropriate intervention to alleviate symptoms in this debilitating disease.

19.
J Physiol ; 594(7): 1931-52, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26915343

RESUMO

KEY POINTS: The real impact of physical exercise parameters, i.e. intensity, type of contraction and solicited energetic metabolism, on neuroprotection in the specific context of neurodegeneration remains poorly explored. In this study behavioural, biochemical and cellular analyses were conducted to compare the effects of two different long-term exercise protocols, high intensity swimming and low intensity running, on motor units of a type 3 spinal muscular atrophy (SMA)-like mouse model. Our data revealed a preferential SMA-induced death of intermediate and fast motor neurons which was limited by the swimming protocol only, suggesting a close relationship between neuron-specific protection and their activation levels by specific exercise. The exercise-induced neuroprotection was independent of SMN protein expression and associated with specific metabolic and behavioural adaptations with notably a swimming-induced reduction of muscle fatigability. Our results provide new insight into the motor units' adaptations to different physical exercise parameters and will contribute to the design of new active physiotherapy protocols for patient care. ABSTRACT: Spinal muscular atrophy (SMA) is a group of autosomal recessive neurodegenerative diseases differing in their clinical outcome, characterized by the specific loss of spinal motor neurons, caused by insufficient level of expression of the protein survival of motor neuron (SMN). No cure is at present available for SMA. While physical exercise might represent a promising approach for alleviating SMA symptoms, the lack of data dealing with the effects of different exercise types on diseased motor units still precludes the use of active physiotherapy in SMA patients. In the present study, we have evaluated the efficiency of two long-term physical exercise paradigms, based on either high intensity swimming or low intensity running, in alleviating SMA symptoms in a mild type 3 SMA-like mouse model. We found that 10 months' physical training induced significant benefits in terms of resistance to muscle damage, energetic metabolism, muscle fatigue and motor behaviour. Both exercise types significantly enhanced motor neuron survival, independently of SMN expression, leading to the maintenance of neuromuscular junctions and skeletal muscle phenotypes, particularly in the soleus, plantaris and tibialis of trained mice. Most importantly, both exercises significantly improved neuromuscular excitability properties. Further, all these training-induced benefits were quantitatively and qualitatively related to the specific characteristics of each exercise, suggesting that the related neuroprotection is strongly dependent on the specific activation of some motor neuron subpopulations. Taken together, the present data show significant long-term exercise benefits in type 3 SMA-like mice providing important clues for designing rehabilitation programmes in patients.


Assuntos
Atrofia Muscular Espinal/terapia , Condicionamento Físico Animal/métodos , Esforço Físico , Animais , Potencial Evocado Motor , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular Espinal/fisiopatologia , Atrofia Muscular Espinal/prevenção & controle , Corrida , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Natação
20.
J Athl Train ; 51(3): 264-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26881750

RESUMO

Various continental sporting events have exposed team sports referees to different environmental conditions. Several studies have focused on strategies to prevent athlete performance impairment induced by heat or warm (or both) conditions, but few authors have investigated the effect of heat on referees' performance. In a thermoneutral environment, referees' physical activity induced mild 2.0% dehydration, which was responsible for reductions in physical, psychomotor, and cognitive performances. Therefore, the hydration status of referees should be taken into account to reduce referees' errors and misjudgments in the heat.


Assuntos
Tomada de Decisões , Desidratação/psicologia , Futebol/psicologia , Cognição , Humanos , Julgamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...