Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0300453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683783

RESUMO

The activity-regulated cytoskeleton-associated protein (Arc) is a complex regulator of synaptic plasticity in glutamatergic neurons. Understanding its molecular function is key to elucidate the neurobiology of memory and learning, stress regulation, and multiple neurological and psychiatric diseases. The recent development of anti-Arc nanobodies has promoted the characterization of the molecular structure and function of Arc. This study aimed to validate two anti-Arc nanobodies, E5 and H11, as selective modulators of the human Arc N-lobe (Arc-NL), a domain that mediates several molecular functions of Arc through its peptide ligand binding site. The structural characteristics of recombinant Arc-NL-nanobody complexes were solved at atomic resolution using X-ray crystallography. Both anti-Arc nanobodies bind specifically to the multi-peptide binding site of Arc-NL. Isothermal titration calorimetry showed that the Arc-NL-nanobody interactions occur at nanomolar affinity, and that the nanobodies can displace a TARPγ2-derived peptide from the binding site. Thus, both anti-Arc-NL nanobodies could be used as competitive inhibitors of endogenous Arc ligands. Differences in the CDR3 loops between the two nanobodies indicate that the spectrum of short linear motifs recognized by the Arc-NL should be expanded. We provide a robust biochemical background to support the use of anti-Arc nanobodies in attempts to target Arc-dependent synaptic plasticity. Function-blocking anti-Arc nanobodies could eventually help unravel the complex neurobiology of synaptic plasticity and allow to develop diagnostic and treatment tools.


Assuntos
Proteínas do Citoesqueleto , Proteínas do Tecido Nervoso , Anticorpos de Domínio Único , Humanos , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/metabolismo , Sítios de Ligação , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/imunologia , Ligantes , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/imunologia , Cristalografia por Raios X , Ligação Proteica , Modelos Moleculares , Sequência de Aminoácidos
2.
PLoS Pathog ; 19(3): e1011174, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36877739

RESUMO

Actins are filament-forming, highly-conserved proteins in eukaryotes. They are involved in essential processes in the cytoplasm and also have nuclear functions. Malaria parasites (Plasmodium spp.) have two actin isoforms that differ from each other and from canonical actins in structure and filament-forming properties. Actin I has an essential role in motility and is fairly well characterized. The structure and function of actin II are not as well understood, but mutational analyses have revealed two essential functions in male gametogenesis and in the oocyst. Here, we present expression analysis, high-resolution filament structures, and biochemical characterization of Plasmodium actin II. We confirm expression in male gametocytes and zygotes and show that actin II is associated with the nucleus in both stages in filament-like structures. Unlike actin I, actin II readily forms long filaments in vitro, and near-atomic structures in the presence or absence of jasplakinolide reveal very similar structures. Small but significant differences compared to other actins in the openness and twist, the active site, the D-loop, and the plug region contribute to filament stability. The function of actin II was investigated through mutational analysis, suggesting that long and stable filaments are necessary for male gametogenesis, while a second function in the oocyst stage also requires fine-tuned regulation by methylation of histidine 73. Actin II polymerizes via the classical nucleation-elongation mechanism and has a critical concentration of ~0.1 µM at the steady-state, like actin I and canonical actins. Similarly to actin I, dimers are a stable form of actin II at equilibrium.


Assuntos
Culicidae , Parasitos , Plasmodium , Animais , Masculino , Actinas/metabolismo , Parasitos/metabolismo , Citoesqueleto de Actina/metabolismo , Culicidae/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium/metabolismo
3.
Front Plant Sci ; 14: 1079778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818891

RESUMO

Introduction: Rice is a primary global food source, and its production is affected by abiotic stress, caused by climate change and other factors. Recently, the pyrimidine reductive catabolic pathway, catalyzed by dihydropyrimidine dehydrogenase (DHPD), dihydropyrimidinase (DHP) and ß-ureidopropionase (ß-UP), has emerged as a potential participant in the abiotic stress response of rice. Methods: The rice enzymes were produced as recombinant proteins, and two were kinetically characterized. Rice dihydroorotate dehydrogenase (DHODH), an enzyme of pyrimidine biosynthesis often confused with DHPD, was also characterized. Salt-sensitive and salt-resistant rice seedlings were subjected to salt stress (24 h) and metabolites in leaves were determined by mass spectrometry. Results: The OsDHPD sequence was homologous to the C-terminal half of mammalian DHPD, conserving FMN and uracil binding sites, but lacked sites for Fe/S clusters, FAD, and NADPH. OsDHPD, truncated to eliminate the chloroplast targeting peptide, was soluble, but inactive. Database searches for polypeptides homologous to the N-terminal half of mammalian DHPD, that could act as co-reductants, were unsuccessful. OsDHODH exhibited kinetic parameters similar to those of other plant DHODHs. OsDHP, truncated to remove a signal sequence, exhibited a kcat/Km = 3.6 x 103 s-1M-1. Osb-UP exhibited a kcat/Km = 1.8 x 104 s-1M-1. Short-term salt exposure caused insignificant differences in the levels of the ureide intermediates dihydrouracil and ureidopropionate in leaves of salt-sensitive and salt-resistant plants. Allantoin, a ureide metabolite of purine catabolism, was found to be significantly higher in the resistant cultivar compared to one of the sensitive cultivars. Discussion: OsDHP, the first plant enzyme to be characterized, showed low kinetic efficiency, but its activity may have been affected by truncation. Osb-UP exhibited kinetic parameters in the range of enzymes of secondary metabolism. Levels of two pathway metabolites were similar in sensitive and resistant cultivars and appeared to be unaffected by short-term salt exposure."

4.
PLoS Pathog ; 18(4): e1010408, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35377914

RESUMO

Malaria is responsible for half a million deaths annually and poses a huge economic burden on the developing world. The mosquito-borne parasites (Plasmodium spp.) that cause the disease depend upon an unconventional actomyosin motor for both gliding motility and host cell invasion. The motor system, often referred to as the glideosome complex, remains to be understood in molecular terms and is an attractive target for new drugs that might block the infection pathway. Here, we present the high-resolution structure of the actomyosin motor complex from Plasmodium falciparum. The complex includes the malaria parasite actin filament (PfAct1) complexed with the class XIV myosin motor (PfMyoA) and its two associated light-chains. The high-resolution core structure reveals the PfAct1:PfMyoA interface in atomic detail, while at lower-resolution, we visualize the PfMyoA light-chain binding region, including the essential light chain (PfELC) and the myosin tail interacting protein (PfMTIP). Finally, we report a bare PfAct1 filament structure at improved resolution.


Assuntos
Malária , Parasitos , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Animais , Malária/metabolismo , Miosinas/metabolismo , Parasitos/metabolismo , Proteínas de Protozoários/metabolismo
5.
Int Wound J ; 18(5): 626-638, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33565263

RESUMO

Wound biofilms must be identified to target disruption and bacterial eradication but are challenging to detect with standard clinical assessment. This study tested whether bacterial fluorescence imaging could detect porphyrin-producing bacteria within a biofilm using well-established in vivo models. Mouse wounds were inoculated on Day 0 with planktonic bacteria (n = 39, porphyrin-producing and non-porphyrin-producing species, 107  colony forming units (CFU)/wound) or with polymicrobial biofilms (n = 16, 3 biofilms per mouse, each with 1:1:1 parts Staphylococcus aureus/Escherichia coli/Enterobacter cloacae, 107  CFU/biofilm) that were grown in vitro. Mouse wounds inoculated with biofilm underwent fluorescence imaging up to Day 4 or 5. Wounds were then excised and sent for microbiological analysis. Bacteria-matrix interaction was assessed with scanning electron microscopy (SEM) and histopathology. A total of 48 hours after inoculation with planktonic bacteria or biofilm, red fluorescence was readily detected in wounds; red fluorescence intensified up to Day 4. Red fluorescence from biofilms persisted in excised wound tissue post-wash. SEM and histopathology confirmed bacteria-matrix interaction. This pre-clinical study is the first to demonstrate the fluorescence detection of bacterial biofilm in vivo using a point-of-care wound imaging device. These findings have implications for clinicians targeting biofilm and may facilitate improved visualisation and removal of biofilms.


Assuntos
Infecção dos Ferimentos , Animais , Bactérias , Biofilmes , Camundongos , Imagem Óptica , Sistemas Automatizados de Assistência Junto ao Leito , Infecção dos Ferimentos/diagnóstico
6.
Future Microbiol ; 15: 319-332, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32101035

RESUMO

Aim: Fluorescence imaging can visualize polymicrobial populations in chronic and acute wounds based on porphyrin fluorescence. We investigated the fluorescent properties of specific wound pathogens and the fluorescence detected from bacteria in biofilm. Methods: Utilizing Remel Porphyrin Test Agar, 32 bacterial and four yeast species were examined for red fluorescence under 405 nm violet light illumination. Polymicrobial biofilms, supplemented with δ-aminolevulinic acid, were investigated similarly. Results: A total of 28/32 bacteria, 1/4 yeast species and polymicrobial biofilms produced red fluorescence, in agreement with their known porphyrin production abilities. Conclusion: These results identify common wound pathogens capable of producing porphyrin-specific fluorescence and support clinical observations using fluorescence imaging to detect pathogenic bacteria in chronic wounds.


Assuntos
Bactérias/isolamento & purificação , Imagem Óptica/métodos , Porfirinas/metabolismo , Ferimentos e Lesões/microbiologia , Bactérias/química , Bactérias/metabolismo , Biofilmes , Fluorescência , Humanos , Porfirinas/química
7.
PLoS Biol ; 17(6): e3000315, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31199804

RESUMO

Plasmodium actins form very short filaments and have a noncanonical link between ATP hydrolysis and polymerization. Long filaments are detrimental to the parasites, but the structural factors constraining Plasmodium microfilament lengths have remained unknown. Using high-resolution crystallography, we show that magnesium binding causes a slight flattening of the Plasmodium actin I monomer, and subsequent phosphate release results in a more twisted conformation. Thus, the Mg-bound monomer is closer in conformation to filamentous (F) actin than the Ca form, and this likely facilitates polymerization. A coordinated potassium ion resides in the active site during hydrolysis and leaves together with the phosphate, a process governed by the position of the Arg178/Asp180-containing A loop. Asp180 interacts with either Lys270 or His74, depending on the protonation state of the histidine, while Arg178 links the inner and outer domains (ID and OD) of the actin protomer. Hence, the A loop acts as a switch between stable and unstable filament conformations, the latter leading to fragmentation. Our data provide a comprehensive model for polymerization, ATP hydrolysis and phosphate release, and fragmentation of parasite microfilaments. Similar mechanisms may well exist in canonical actins, although fragmentation is much less favorable due to several subtle sequence differences as well as the methylation of His73, which is absent on the corresponding His74 in Plasmodium actin I.


Assuntos
Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Plasmodium/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/fisiologia , Difosfato de Adenosina/metabolismo , Animais , Citoesqueleto/metabolismo , Hidrólise , Cinética , Magnésio/metabolismo , Fosfatos/metabolismo , Polimerização
8.
Artigo em Inglês | MEDLINE | ID: mdl-29623259

RESUMO

Cytidine triphosphate synthase catalyzes the synthesis of cytidine 5'-triphosphate (CTP) from uridine 5'-triphosphate (UTP), the final step in the production of cytidine nucleotides. CTP synthases also form filamentous structures of different morphologies known as cytoophidia, whose functions in most organisms are unknown. Here, we identified and characterized a novel CTP synthase (TgCTPS) from Toxoplasma gondii. We show that TgCTPS is capable of substituting for its counterparts in the otherwise lethal double mutant (ura7Δ ura8Δ) of Saccharomyces cerevisiae. Equally, recombinant TgCTPS purified from Escherichia coli encodes for a functional protein in enzyme assays. The epitope-tagged TgCTPS under the control of its endogenous promoter displays a punctate cytosolic distribution, which undergoes spatial reorganization to form foci or filament-like structures when the parasite switches from a nutrient-replete (intracellular) to a nutrient-scarce (extracellular) condition. An analogous phenotype is observed upon nutrient stress or after treatment with a glutamine analog, 6-diazo-5-oxo-L-norleucine (DON). The exposure of parasites to DON disrupts the lytic cycle, and the TgCTPS is refractory to a genetic deletion, suggesting an essential requirement of this enzyme for T. gondii. Not least, this study, together with previous studies, supports that CTP synthase can serve as a potent drug target, because the parasite, unlike human host cells, cannot compensate for the lack of CTP synthase activity.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Sequência de Aminoácidos , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/genética , Citoplasma/enzimologia , Glutamina/metabolismo , Humanos , Cinética , Dados de Sequência Molecular , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/metabolismo , Toxoplasmose/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...