Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 8(1)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059491

RESUMO

In vitro neutralizing antibodies have been often correlated with protection against Rift Valley fever virus (RVFV) infection. We have reported previously that a single inoculation of sucrose-purified modified vaccinia Ankara (MVA) encoding RVFV glycoproteins (rMVAGnGc) was sufficient to induce a protective immune response in mice after a lethal RVFV challenge. Protection was related to the presence of glycoprotein specific CD8+ cells, with a low-level detection of in vitro neutralizing antibodies. In this work we extended those observations aimed to explore the role of humoral responses after MVA vaccination and to study the contribution of each glycoprotein antigen to the protective efficacy. Thus, we tested the efficacy and immune responses in BALB/c mice of recombinant MVA viruses expressing either glycoprotein Gn (rMVAGn) or Gc (rMVAGc). In the absence of serum neutralizing antibodies, our data strongly suggest that protection of vaccinated mice upon the RVFV challenge can be achieved by the activation of cellular responses mainly directed against Gc epitopes. The involvement of cellular immunity was stressed by the fact that protection of mice was strain dependent. Furthermore, our data suggest that the rMVA based single dose vaccination elicits suboptimal humoral immune responses against Gn antigen since disease in mice was exacerbated upon virus challenge in the presence of rMVAGnGc or rMVAGn immune serum. Thus, Gc-specific cellular immunity could be an important component in the protection after the challenge observed in BALB/c mice, contributing to the elimination of infected cells reducing morbidity and mortality and counteracting the deleterious effect of a subneutralizing antibody immune response.

2.
Trials ; 20(1): 622, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694684

RESUMO

BACKGROUND: Use of minimally invasive surgical techniques for lung resection surgery (LRS), such as video-assisted thoracoscopy (VATS), has increased in recent years. However, there is little information about the best anesthetic technique in this context. This surgical approach is associated with a lower intensity of postoperative pain, and its use has been proposed in programs for enhanced recovery after surgery (ERAS). This study compares the severity of postoperative complications in patients undergoing LRS who have received lidocaine intraoperatively either intravenously or via paravertebral administration versus saline. METHODS/DESIGN: We will conduct a single-center randomized controlled trial involving 153 patients undergoing LRS through a thoracoscopic approach. The patients will be randomly assigned to one of the following study groups: intravenous lidocaine with more paravertebral thoracic (PVT) saline, PVT lidocaine with more intravenous saline, or intravenous remifentanil with more PVT saline. The primary outcome will be the comparison of the postoperative course through Clavien-Dindo classification. Furthermore, we will compare the perioperative pulmonary and systemic inflammatory response by monitoring biomarkers in the bronchoalveolar lavage fluid and blood, as well as postoperative analgesic consumption between the three groups of patients. We will use an ANOVA to compare quantitative variables and a chi-squared test to compare qualitative variables. DISCUSSION: The development of less invasive surgical techniques means that anesthesiologists must adapt their perioperative management protocols and look for anesthetic techniques that provide good analgesic quality and allow rapid rehabilitation of the patient, as proposed in the ERAS protocols. The administration of a continuous infusion of intravenous lidocaine has proven to be useful and safe for the management of other types of surgery, as demonstrated in colorectal cancer. We want to know whether the continuous administration of lidocaine by a paravertebral route can be substituted with the intravenous administration of this local anesthetic in a safe and effective way while avoiding the risks inherent in the use of regional anesthetic techniques. In this way, this technique could be used in a safe and effective way in ERAS programs for pulmonary resection. TRIAL REGISTRATION: EudraCT, 2016-004271-52; ClinicalTrials.gov, NCT03905837 . Protocol number IGGFGG-2016 version 4.0, 27th April 2017.


Assuntos
Anestésicos Locais/administração & dosagem , Lidocaína/administração & dosagem , Pneumonectomia/métodos , Complicações Pós-Operatórias/epidemiologia , Método Duplo-Cego , Recuperação Pós-Cirúrgica Melhorada , Humanos , Infusões Intravenosas , Assistência Perioperatória , Toracoscopia
3.
Vet Res ; 49(1): 21, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467018

RESUMO

The aim of this work was to evaluate the immunogenicity and efficacy of DNA and MVA vaccines encoding the RVFV glycoproteins Gn and Gc in an ovine model of RVFV infection. Adult sheep of both sexes were challenged 12 weeks after the last immunization and clinical, virological, biochemical and immunological consequences, were analyzed. Strategies based on immunization with homologous DNA or heterologous DNA/MVA prime-boost were able to induce a rapid in vitro neutralizing antibody response as well as IFNγ production after in vitro virus specific re-stimulation. In these animals we observed reduced viremia levels and less clinical signs when compared with mock-immunized controls. In contrast, sheep inoculated with a homologous MVA prime-boost showed increased viremia correlating with the absence of detectable neutralizing antibody responses, despite of inducing cellular responses after the last immunization. However, faster induction of neutralizing antibodies and IFNγ production after challenge were found in this group when compared to the mock vaccinated group, indicative of a primed immune response. In conclusion, these results suggest that vaccination strategies based on DNA priming were able to mount and maintain specific anti-RVFV glycoprotein immune responses upon homologous or heterologous booster doses, warranting further optimization in large animal models of infection.


Assuntos
Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/imunologia , Doenças dos Ovinos/prevenção & controle , Vacinação/veterinária , Vacinas de DNA/farmacologia , Vacinas Virais/farmacologia , Animais , Feminino , Masculino , Febre do Vale de Rift/virologia , Ovinos , Doenças dos Ovinos/virologia
4.
Nanomedicine ; 12(5): 1185-92, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26970026

RESUMO

In this work we have tested the potential antiviral activity of silver nanoparticles formulated as Argovit™ against Rift Valley fever virus (RVFV). The antiviral activity of Argovit was tested on Vero cell cultures and in type-I interferon receptor deficient mice (IFNAR (-/-) mice) by two different approaches: (i) different dilutions of Argovit were added to previously infected cells or administrated to animals infected with a lethal dose of virus; (ii) virus was pre-incubated with different dilutions of Argovit before inoculation in mice or cells. Though the ability of silver nanoparticles to control an ongoing RVFV infection in the conditions tested was limited, the incubation of virus with Argovit before the infection led to a reduction of the infectivity titers both in vitro and in vivo. These results reveal the potential application of silver nanoparticles to control the infectivity of RVFV, which is an important zoonotic pathogen.


Assuntos
Antivirais/farmacologia , Nanopartículas/uso terapêutico , Vírus da Febre do Vale do Rift/efeitos dos fármacos , Prata/uso terapêutico , Animais , Camundongos , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/patogenicidade
5.
Mol Immunol ; 66(1): 78-88, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25725948

RESUMO

Rift Valley fever (RVF) is a mosquito-borne viral zoonosis with devastating health impacts in domestic ruminants and humans. Effective vaccines and accurate disease diagnostic tools are key components in the control of RVF. Animal models reproducing infection with RVF virus are of upmost importance in the development of these disease control tools. Rodent infection models are currently used in the initial steps of vaccine development and for the study of virus induced pathology. Translation of data obtained in these animal models to target species (ruminants and humans) is highly desirable but does not always occur. Small ruminants and non-human primates have been used for pathogenesis and transmission studies, and for testing the efficacy of vaccines and therapeutic antiviral compounds. However, the molecular mechanisms of the immune response elicited by RVF virus infection or vaccination are still poorly understood. The paucity of data in this area offers opportunities for new research activities and programs. This review summarizes our current understanding with respect to immunity and pathogenesis of RVF in animal models with a particular emphasis on small ruminants and non-human primates, including recent experimental infection data in sheep.


Assuntos
Modelos Animais de Doenças , Haplorrinos/imunologia , Febre do Vale de Rift/imunologia , Vírus da Febre do Vale do Rift/imunologia , Ruminantes/imunologia , Animais , Humanos , Roedores
6.
Antiviral Res ; 109: 64-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24973761

RESUMO

In this work we have addressed the effect of synthetic, non-infectious, RNA transcripts, mimicking structural domains of the non-coding regions (NCRs) of the foot-and-mouth disease virus (FMDV) genome on the infection of mice with Rift Valley fever virus (RVFV). Groups of 5 mice were inoculated intraperitoneally (i.p.) with 200 µg of synthetic RNA resembling the 5'-terminal S region, the internal ribosome entry site (IRES) or the 3'-NCR of the FMDV genome. RNA inoculation was performed 24h before (-24 h), 24 h after (+24 h) or simultaneously to the challenge with a lethal dose of RVFV. Administration of the IRES RNA afforded higher survival rates than administration of S or 3'NCR transcripts either at -24h or +24h after challenge. In contrast, when RNA inoculation and viral challenge were performed simultaneously, all mice survived in both IRES- and 3'NCR-inoculated groups, with an 80% survival in mice receiving the S RNA. Among survivors, a complete correlation between significant anti-RVFV circulating antibody titers and resistance to a second lethal challenge with the virus was observed, supporting a limited viral replication in the RNA-inoculated animals upon the first challenge. All three RNA transcripts were able to induce the production of systemic antiviral and pro-inflammatory cytokines. These data show that triggering of intracellular pathogen sensing pathways constitutes a promising approach towards development of novel RVF preventive or therapeutic strategies.


Assuntos
Vírus da Febre Aftosa/genética , Interferons/administração & dosagem , RNA Viral/imunologia , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Proteção Cruzada , Vírus da Febre Aftosa/imunologia , Genoma Viral , Humanos , Camundongos , Camundongos Endogâmicos BALB C , RNA Viral/administração & dosagem , RNA Viral/síntese química , RNA Viral/genética , Febre do Vale de Rift/imunologia , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/fisiologia , Vacinação , Vacinas Virais/administração & dosagem , Vacinas Virais/síntese química , Vacinas Virais/genética , Replicação Viral
7.
Antiviral Res ; 108: 165-72, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24933081

RESUMO

The present study has evaluated the protection conferred by a single subcutaneous dose of a modified vaccinia virus Ankara (MVA) vectored vaccine encoding the Rift Valley Fever virus (RVFV) glycoproteins Gn and Gc in lambs. Three groups of six to seven lambs were immunized as follows: one group received the vaccine (termed rMVA-GnGc), a second group received an MVA vector (vector control) and a third group received saline solution (non-vaccinated control). Fourteen days later, all animals were subcutaneously challenged with 10(5) TCID50 of the virulent RVFV isolate 56/74 and vaccine efficacy assessed using standard endpoints. Two lambs (one from the vaccine group and one from the vector control group) succumbed to RVFV challenge, showing characteristic liver lesions. Lambs from both the vector control and non-vaccinated groups were febrile from days 2 to 5 post challenge (pc) while those in the rMVA-GnGc group showed a single peak of pyrexia at day 3 pc. RVFV RNA was detected in both nasal and oral swabs from days 3 to 7 pc in some lambs from the vector control and non-vaccinated groups, but no viral shedding could be detected in the surviving lambs vaccinated with rMVA-GnGc. Together, the data suggest that a single dose of the rMVA-GnGc vaccine may be sufficient to reduce RVFV shedding and duration of viremia but does not provide sterile immunity nor protection from disease. Further optimization of this vaccine approach in lambs is warranted.


Assuntos
Portadores de Fármacos , Vetores Genéticos , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/imunologia , Doenças dos Ovinos/prevenção & controle , Vaccinia virus/genética , Vacinas Virais/imunologia , Animais , Feminino , Febre/etiologia , Injeções Subcutâneas , Fígado/patologia , Masculino , Boca/virologia , Cavidade Nasal/virologia , RNA Viral/genética , RNA Viral/isolamento & purificação , Febre do Vale de Rift/imunologia , Febre do Vale de Rift/patologia , Vírus da Febre do Vale do Rift/genética , Ovinos , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/patologia , Análise de Sobrevida , Resultado do Tratamento , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Eliminação de Partículas Virais
8.
Virol J ; 10: 349, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24304565

RESUMO

BACKGROUND: Rift Valley Fever (RVF) is a viral zoonosis that historically affects livestock production and human health in sub-Saharan Africa, though epizootics have also occurred in the Arabian Peninsula. Whilst an effective live-attenuated vaccine is available for livestock, there is currently no licensed human RVF vaccine. Replication-deficient chimpanzee adenovirus (ChAd) vectors are an ideal platform for development of a human RVF vaccine, given the low prevalence of neutralizing antibodies against them in the human population, and their excellent safety and immunogenicity profile in human clinical trials of vaccines against a wide range of pathogens. METHODS: Here, in BALB/c mice, we evaluated the immunogenicity and efficacy of a replication-deficient chimpanzee adenovirus vector, ChAdOx1, encoding the RVF virus envelope glycoproteins, Gn and Gc, which are targets of virus neutralizing antibodies. The ChAdOx1-GnGc vaccine was assessed in comparison to a replication-deficient human adenovirus type 5 vector encoding Gn and Gc (HAdV5-GnGc), a strategy previously shown to confer protective immunity against RVF in mice. RESULTS: A single immunization with either of the vaccines conferred protection against RVF virus challenge eight weeks post-immunization. Both vaccines elicited RVF virus neutralizing antibody and a robust CD8+ T cell response. CONCLUSIONS: Together the results support further development of RVF vaccines based on replication-deficient adenovirus vectors, with ChAdOx1-GnGc being a potential candidate for use in future human clinical trials.


Assuntos
Adenoviridae/genética , Portadores de Fármacos , Vetores Genéticos , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Febre do Vale de Rift/imunologia , Vírus da Febre do Vale do Rift/genética , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
9.
PLoS Negl Trop Dis ; 7(7): e2309, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23875044

RESUMO

BACKGROUND: Rift Valley fever virus (RVFV) is a mosquito-borne pathogen causing an important disease in ruminants often transmitted to humans after epizootic outbreaks in African and Arabian countries. To help combat the spread of the disease, prophylactic measures need to be developed and/or improved. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we evaluated the immunogenicity and protective efficacy of recombinant plasmid DNA and modified vaccinia virus Ankara (rMVA) vectored vaccines against Rift Valley fever in mice. These recombinant vaccines encoded either of two components of the Rift Valley fever virus: the viral glycoproteins (Gn/Gc) or the nucleoprotein (N). Following lethal challenge with live RVFV, mice immunized with a single dose of the rMVA-Gn/Gc vaccine showed no viraemia or clinical manifestation of disease, but mounted RVFV neutralizing antibodies and glycoprotein specific CD8+ T-cell responses. Neither DNA-Gn/Gc alone nor a heterologous prime-boost immunization schedule (DNA-Gn/Gc followed by rMVAGn/Gc) was better than the single rMVA-Gn/Gc immunization schedule with regards to protective efficacy. However, the rMVA-Gn/Gc vaccine failed to protect IFNAR(-/-) mice upon lethal RVFV challenge suggesting a role for innate responses in protection against RVFV. Despite induction of high titer antibodies against the RVFV nucleoprotein, the rMVA-N vaccine, whether in homologous or heterologous prime-boost schedules with the corresponding recombinant DNA vaccine, only conferred partial protection to RVFV challenge. CONCLUSIONS/SIGNIFICANCE: Given the excellent safety profile of rMVA based vaccines in humans and animals, our data supports further development of rMVA-Gn/Gc as a vaccine strategy that can be used for the prevention of Rift Valley fever in both humans and livestock.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Glicoproteínas/imunologia , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/imunologia , Vacinas de DNA/imunologia , Proteínas Virais/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Portadores de Fármacos , Epitopos/imunologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptor de Interferon alfa e beta/deficiência , Febre do Vale de Rift/imunologia , Febre do Vale de Rift/mortalidade , Febre do Vale de Rift/patologia , Análise de Sobrevida , Vacinas de DNA/administração & dosagem , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vaccinia virus/genética , Vacinas Virais/administração & dosagem , Viremia/prevenção & controle
10.
PLoS One ; 8(7): e70197, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894615

RESUMO

African horse sickness virus (AHSV) belongs to the genus Orbivirus. We have now engineered naked DNAs and recombinant modified vaccinia virus Ankara (rMVA) expressing VP2 and NS1 proteins from AHSV-4. IFNAR((-/-)) mice inoculated with DNA/rMVA-VP2,-NS1 from AHSV-4 in an heterologous prime-boost vaccination strategy generated significant levels of neutralizing antibodies specific of AHSV-4. In addition, vaccination stimulated specific T cell responses against the virus. The vaccine elicited partial protection against an homologous AHSV-4 infection and induced cross-protection against the heterologous AHSV-9. Similarly, IFNAR((-/-)) mice vaccinated with an homologous prime-boost strategy with rMVA-VP2-NS1 from AHSV-4 developed neutralizing antibodies and protective immunity against AHSV-4. Furthermore, the levels of immunity were very high since none of vaccinated animals presented viraemia when they were challenged against the homologous AHSV-4 and very low levels when they were challenged against the heterologous virus AHSV-9. These data suggest that the immunization with rMVA/rMVA was more efficient in protection against a virulent challenge with AHSV-4 and both strategies, DNA/rMVA and rMVA/rMVA, protected against the infection with AHSV-9. The inclusion of the protein NS1 in the vaccine formulations targeting AHSV generates promising multiserotype vaccines.


Assuntos
Vírus da Doença Equina Africana/imunologia , Doença Equina Africana/imunologia , Modelos Animais de Doenças , Proteínas não Estruturais Virais/imunologia , Vacinas Virais/imunologia , Doença Equina Africana/prevenção & controle , Vírus da Doença Equina Africana/classificação , Animais , Linhagem Celular , Chlorocebus aethiops , Cavalos , Masculino , Camundongos , Camundongos da Linhagem 129 , Receptor de Interferon alfa e beta/genética , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Células Vero , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...