Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(8): e0220700, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31374105

RESUMO

Artificial smokes focusing on macroscopic or fluid properties of smoke have been available for a long time. This paper presents a simple method to generate fully customizable smoke-like atmospheres at microscopic scale (i.e. considering their constituent particles as discrete elements) using a different approach. Synthetic, reproducible media can be generated combining monodisperse microspheres with known geometrical and optical properties conveniently parameterized. The method is presented as a proof-of-concept, highlighting the design decisions along with their implications. Practical issues such as aerosol nebulization, particle carrier selection or the features of the medium chamber where the smoke-like atmosphere is to be tested are analyzed. A comparison between methanol and ethanol as carriers for polystyrene microsphere nebulization is also made. The method could be the seed for the obtention of standard reference media for calibration or standardized characterization of not only smoke detectors and exhaust smoke sensors but also other instruments relying on optical properties of dispersive media (dust in PV panels, public lighting, etc.).


Assuntos
Aerossóis , Fumaça , Microesferas , Tamanho da Partícula
2.
Sensors (Basel) ; 13(9): 12648-62, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24051526

RESUMO

This paper presents a CMOS temperature sensor based on the thermal dependencies of the leakage currents targeting the 65 nm node. To compensate for the effect of process fluctuations, the proposed sensor realizes the ratio of two measures of the time it takes a capacitor to discharge through a transistor in the subthreshold regime. Furthermore, a novel charging mechanism for the capacitor is proposed to further increase the robustness against fabrication variability. The sensor, including digitization and interfacing, occupies 0.0016 mm² and has an energy consumption of 47.7-633 pJ per sample. The resolution of the sensor is 0.28 °C, and the 3σ inaccuracy over the range 40-110 °C is 1.17 °C.


Assuntos
Semicondutores , Termografia/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...