Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 17(1): e1009277, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33411704

RESUMO

The nuclear protein CCCTC-binding factor (CTCF) has diverse roles in chromatin architecture and gene regulation. Functionally, CTCF associates with thousands of genomic sites and interacts with proteins, such as cohesin, or non-coding RNAs to facilitate specific transcriptional programming. In this study, we examined CTCF during the cellular stress response in human primary cells using immune-blotting, quantitative real time-PCR, chromatin immunoprecipitation-sequence (ChIP-seq) analysis, mass spectrometry, RNA immunoprecipitation-sequence analysis (RIP-seq), and Airyscan confocal microscopy. Unexpectedly, we found that CTCF is exquisitely sensitive to diverse forms of stress in normal patient-derived human mammary epithelial cells (HMECs). In HMECs, a subset of CTCF protein forms complexes that localize to Serine/arginine-rich splicing factor (SC-35)-containing nuclear speckles. Upon stress, this species of CTCF protein is rapidly downregulated by changes in protein stability, resulting in loss of CTCF from SC-35 nuclear speckles and changes in CTCF-RNA interactions. Our ChIP-seq analysis indicated that CTCF binding to genomic DNA is largely unchanged. Restoration of the stress-sensitive pool of CTCF protein abundance and re-localization to nuclear speckles can be achieved by inhibition of proteasome-mediated degradation. Surprisingly, we observed the same characteristics of the stress response during neuronal differentiation of human pluripotent stem cells (hPSCs). CTCF forms stress-sensitive complexes that localize to SC-35 nuclear speckles during a specific stage of neuronal commitment/development but not in differentiated neurons. We speculate that these particular CTCF complexes serve a role in RNA processing that may be intimately linked with specific genes in the vicinity of nuclear speckles, potentially to maintain cells in a certain differentiation state, that is dynamically regulated by environmental signals. The stress-regulated activity of CTCF is uncoupled in persistently stressed, epigenetically re-programmed "variant" HMECs and certain cancer cell lines. These results reveal new insights into CTCF function in cell differentiation and the stress-response with implications for oxidative damage-induced cancer initiation and neuro-degenerative diseases.


Assuntos
Fator de Ligação a CCCTC/genética , Proteínas de Ligação a DNA/genética , Neoplasias/genética , Doenças Neurodegenerativas/genética , Fatores de Processamento de Serina-Arginina/genética , Sítios de Ligação , Diferenciação Celular , Linhagem Celular Tumoral , Cromatina , Cromossomos , Epigênese Genética/genética , Regulação da Expressão Gênica , Genômica , Humanos , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo/genética , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia , Ligação Proteica , Processamento Pós-Transcricional do RNA/genética , Estresse Fisiológico/genética
2.
Cancer Res ; 79(4): 689-698, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30718357

RESUMO

EGFR-activating mutations are observed in approximately 15% to 20% of patients with non-small cell lung cancer. Tyrosine kinase inhibitors have provided an illustrative example of the successes in targeting oncogene addiction in cancer and the role of tumor-specific adaptations conferring therapeutic resistance. The compound osimertinib is a third-generation tyrosine kinase inhibitor, which was granted full FDA approval in March 2017 based on targeting EGFR T790M resistance. The compound has received additional FDA approval as first-line therapy with improvement in progression-free survival by suppressing the activating mutation and preventing the rise of the dominant resistance clone. Drug development has been breathtaking in this space with other third-generation compounds at various stages of development: rociletinib (CO-1686), olmutinib (HM61713), nazartinib (EGF816), naquotinib (ASP8273), mavelertinib (PF-0647775), and AC0010. However, therapeutic resistance after the administration of third-generation inhibitors is complex and not fully understood, with significant intertumoral and intratumoral heterogeneity. Repeat tissue and plasma analyses on therapy have revealed insights into multiple mechanisms of resistance, including novel second site EGFR mutations, activated bypass pathways such as MET amplification, HER2 amplification, RAS mutations, BRAF mutations, PIK3CA mutations, and novel fusion events. Strategies to understand and predict patterns of mutagenesis are still in their infancy; however, technologies to understand synthetically lethal dependencies and track cancer evolution through therapy are being explored. The expansion of combinatorial therapies is a direction forward targeting minimal residual disease and bypass pathways early based on projected resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Humanos , Neoplasias Pulmonares/patologia , Prognóstico
3.
J Biotechnol ; 286: 56-67, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30243609

RESUMO

Chinese hamster ovary (CHO) derived cell lines are the preferred host system for the production of therapeutic proteins. The aim of this work was to explore the regulation of suspension-adapted CHO-K1 host cell line bioprocesses, especially under a temperature gradient from 37 °C to 31 °C. We analyzed cell cycle behavior through flow cytometry of propidium iodide stained cells and high throughput transcriptome dynamics by RNA sequencing. We found a cell culture state characterized by G0/G1 synchronization, mainly during the late exponential growth phase and towards the last days of the stationary phase. We successfully identified key genes and pathways connected with the particular culture states, such as response to low temperature, modulation of the cell cycle, regulation of DNA replication and repair, apoptosis, among others. The most important gene expression changes occurred throughout the stationary phase when gene up-regulation markedly prevailed. Our RNA-seq data analysis enabled the identification of target genes for mechanism-based cell line engineering and bioprocess modification, an essential step to translate gene expression data from CHO-K1 host cells into bioprocess-related knowledge. Further efforts aim at increasing desirable phenotypes of CHO cells, and promoting efficient production of high quality therapeutic proteins can highly benefit from this type of studies.


Assuntos
Células CHO/citologia , Técnicas de Cultura de Células/métodos , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Animais , Ciclo Celular , Cricetulus , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Temperatura
4.
Proc Natl Acad Sci U S A ; 111(44): E4726-35, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25339441

RESUMO

The acute cellular response to stress generates a subpopulation of reversibly stress-tolerant cells under conditions that are lethal to the majority of the population. Stress tolerance is attributed to heterogeneity of gene expression within the population to ensure survival of a minority. We performed whole transcriptome sequencing analyses of metastatic human breast cancer cells subjected to the chemotherapeutic agent paclitaxel at the single-cell and population levels. Here we show that specific transcriptional programs are enacted within untreated, stressed, and drug-tolerant cell groups while generating high heterogeneity between single cells within and between groups. We further demonstrate that drug-tolerant cells contain specific RNA variants residing in genes involved in microtubule organization and stabilization, as well as cell adhesion and cell surface signaling. In addition, the gene expression profile of drug-tolerant cells is similar to that of untreated cells within a few doublings. Thus, single-cell analyses reveal the dynamics of the stress response in terms of cell-specific RNA variants driving heterogeneity, the survival of a minority population through generation of specific RNA variants, and the efficient reconversion of stress-tolerant cells back to normalcy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Paclitaxel/farmacologia , RNA Neoplásico , Análise de Sequência de RNA , Transcrição Gênica , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
5.
Mol Cell ; 50(4): 552-64, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23706820

RESUMO

Cellular stress results in profound changes in RNA and protein synthesis. How cells integrate this intrinsic, p53-centered program with extracellular signals is largely unknown. We demonstrate that TGF-ß1 signaling interferes with the stress response through coordinate transcriptional and translational repression of p53 levels, which reduces p53-activated transcription, and apoptosis in precancerous cells. Mechanistically, E2F-4 binds constitutively to the TP53 gene and induces transcription. TGF-ß1-activated Smads are recruited to a composite Smad/E2F-4 element by an E2F-4/p107 complex that switches to a Smad corepressor, which represses TP53 transcription. TGF-ß1 also causes dissociation of ribosomal protein RPL26 and elongation factor eEF1A from p53 mRNA, thereby reducing p53 mRNA association with polyribosomes and p53 translation. TGF-ß1 signaling is dominant over stress-induced transcription and translation of p53 and prevents stress-imposed downregulation of Smad proteins. Thus, crosstalk between the TGF-ß and p53 pathways defines a major node of regulation in the cellular stress response, enhancing drug resistance.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Proteína Supressora de Tumor p53/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Sequência de Bases , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Fator de Transcrição E2F4/genética , Fator de Transcrição E2F4/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Imuno-Histoquímica , Glândulas Mamárias Humanas/citologia , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteínas Smad/genética , Proteínas Smad/metabolismo , Estresse Fisiológico/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Oncogene ; 23(50): 8196-205, 2004 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-15378003

RESUMO

Kruppel-like transcription factors (KLFs) represent one of the most diverse set of regulators in vertebrate organisms. KLF family members are involved in cell proliferation and differentiation control in normal as well as in pathological situations. Here, we demonstrate that KLF6 behaves as a functional antagonist of the c-Jun proto-oncoprotein. Thus, KLF6 overexpression downregulated c-Jun-dependent transcription and a physical interaction between c-Jun and KLF6 was detected. Moreover, cell proliferation induced by c-Jun was significantly decreased by KLF6. The inhibition of c-Jun functions correlates directly with c-Jun protein degradation induced by KLF6. We also show that all KLF6 effects on c-Jun were largely dependent on phorbol ester (TPA/ionomycin) extracellular stimulation, which enhanced KLF6 nuclear translocation and transcriptional activity and modified its phosphorylation status. Our data are consistent with a novel mechanism of KLF6's role as an inhibitor of cell proliferation by counteracting the function of the c-Jun proto-oncoprotein involving enhanced c-Jun degradation by the proteasome-dependent pathway, and further reinforces KLF6 as a potential tumor suppressor gene product.


Assuntos
Proteínas Proto-Oncogênicas c-jun/antagonistas & inibidores , Proteínas Proto-Oncogênicas/fisiologia , Transativadores/fisiologia , Animais , Células COS , Divisão Celular/fisiologia , Núcleo Celular/metabolismo , Humanos , Hidrólise , Células Jurkat , Fator 6 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like , Fosforilação , Transporte Proteico , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas c-jun/fisiologia , Transativadores/metabolismo , Transcrição Gênica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...