Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Neurochem Int ; 174: 105679, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309665

RESUMO

Down syndrome (DS) is the most common genetic disorder associated with intellectual disability. To study this syndrome, several mouse models have been developed. Among the most common is the Ts65Dn model, which mimics most of the alterations observed in DS. Ts65Dn mice, as humans with DS, show defects in the structure, density, and distribution of dendritic spines in the cerebral cortex and hippocampus. Fasudil is a potent inhibitor of the RhoA kinase pathway, which is involved in the formation and stabilization of dendritic spines. Our study analysed the effect of early chronic fasudil treatment on the alterations observed in the hippocampus of the Ts65Dn model. We observed that treating Ts65Dn mice with fasudil induced an increase in neural plasticity in the hippocampus: there was an increment in the expression of PSA-NCAM and BDNF, in the dendritic branching and spine density of granule neurons, as well as in cell proliferation and neurogenesis in the subgranular zone. Finally, the treatment reduced the unbalance between excitation and inhibition present in this model. Overall, early chronic treatment with fasudil increases cell plasticity and eliminates differences with euploid animals.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Síndrome de Down , Humanos , Camundongos , Animais , Síndrome de Down/tratamento farmacológico , Síndrome de Down/genética , Síndrome de Down/metabolismo , Camundongos Transgênicos , Hipocampo/metabolismo , Neurônios/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
2.
Nanomedicine ; 34: 102376, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33667725

RESUMO

Alcohol abuse induces the expression of inflammatory mediators by activating the immune receptors to trigger neuroinflammation and brain damage; however, therapies that reduce neuroimmune system activation may protect against alcohol's damaging effects. Curcuminoids possess anti-inflammatory properties but suffer from low bioavailability; therefore, we designed a new receptor-targeted biodegradable star-shaped crosslinked polypeptide polymer that bears propargylamine moieties and bisdemethoxycurcumin (StClPr-BDMC-ANG) as an enhanced anti-inflammatory therapeutic that penetrates the blood-brain-barrier and ameliorates alcohol-induced neuroinflammation. StClPr-BDMC-ANG administration maintains the viability of primary glia and inhibits the ethanol-induced upregulation of crucial inflammatory mediators in the prefrontal and medial cortex in a mouse model of chronic ethanol consumption. StClPr-BDMC-ANG treatment also suppresses the ethanol-mediated downregulation of microRNAs known to negatively modulate neuroinflammation in the brain cortex (miRs 146a-5p and let-7b-5p). In summary, our results demonstrate the attenuation of alcohol-induced neuroinflammation by an optimized and targeted polypeptide-based nanoconjugate of a curcuminoid.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Curcumina/análogos & derivados , Nanoconjugados/administração & dosagem , Doenças Neuroinflamatórias/tratamento farmacológico , Peptídeos/administração & dosagem , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Curcumina/administração & dosagem , Curcumina/química , Camundongos , Nanoconjugados/química , Doenças Neuroinflamatórias/induzido quimicamente , Peptídeos/química
3.
Brain Pathol ; 31(1): 174-188, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876364

RESUMO

Adolescence is a brain maturation developmental period during which remodeling and changes in synaptic plasticity and neural connectivity take place in some brain regions. Different mechanism participates in adolescent brain maturation, including autophagy that plays a role in synaptic development and plasticity. Alcohol is a neurotoxic compound and its abuse in adolescence induces neuroinflammation, synaptic and myelin alterations, neural damage and behavioral impairments. Changes in synaptic plasticity and its regulation by mTOR have also been suggested to play a role in the behavioral dysfunction of binge ethanol drinking in adolescence. Therefore, by considering the critical role of mTOR in both autophagy and synaptic plasticity in the developing brain, the present study aims to evaluate whether binge ethanol treatment in adolescence would induce dysfunctions in synaptic plasticity and cognitive functions and if mTOR inhibition with rapamycin is capable of restoring both effects. Using C57BL/6 adolescent female and male mice (PND30) treated with ethanol (3 g/kg) on two consecutive days at 48-hour intervals over 2 weeks, we show that binge ethanol treatment alters the density and morphology of dendritic spines, effects that are associated with learning and memory impairments and changes in the levels of both transcription factor CREB phosphorylation and miRNAs. Rapamycin administration (3 mg/kg) prior to ethanol administration restores ethanol-induced changes in both plasticity and behavior dysfunctions in adolescent mice. These results support the critical role of mTOR/autophagy dysfunctions in the dendritic spines alterations and cognitive alterations induced by binge alcohol in adolescence.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/patologia , Encéfalo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
4.
Mol Neurobiol ; 56(2): 1475-1487, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29948948

RESUMO

Striatal-enriched protein tyrosine phosphatase (STEP) modulates key signaling molecules involved in synaptic plasticity and neuronal function. It is postulated that STEP opposes the development of long-term potentiation (LTP) and that it exerts a restraint on long-term memory (LTM). Here, we examined whether STEP61 levels are regulated during hippocampal LTP and after training in hippocampal-dependent tasks. We found that after inducing LTP by high frequency stimulation or theta-burst stimulation STEP61 levels were significantly reduced, with a concomitant increase of STEP33 levels, a product of calpain cleavage. Importantly, inhibition of STEP with TC-2153 improved LTP in hippocampal slices. Moreover, we observed that after training in the passive avoidance and the T-maze spontaneous alternation task, hippocampal STEP61 levels were significantly reduced, but STEP33 levels were unchanged. Yet, hippocampal BDNF content and TrkB levels were increased in trained mice, and it is known that BDNF promotes STEP degradation through the proteasome. Accordingly, hippocampal pTrkBTyr816, pPLCγTyr783, and protein ubiquitination levels were increased in T-SAT trained mice. Remarkably, injection of the TrkB antagonist ANA-12 (2 mg/Kg, but not 0.5 mg/Kg) elicited LTM deficits and promoted STEP61 accumulation in the hippocampus. Also, STEP knockout mice outperformed wild-type animals in an age- and test-dependent manner. Summarizing, STEP61 undergoes proteolytic degradation in conditions leading to synaptic strengthening and memory formation, thus highlighting its role as a molecular constrain, which is removed to enable the activation of pathways important for plasticity processes.


Assuntos
Hipocampo/metabolismo , Aprendizagem/fisiologia , Potenciação de Longa Duração/fisiologia , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Memória/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Proteólise , Ubiquitinação/fisiologia
5.
Histol Histopathol ; 33(1): 101-115, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28374408

RESUMO

Down syndrome (DS) is the most common chromosomal aneuploidy. Although trisomy on chromosome 21 can display variable phenotypes, there is a common feature among all DS individuals: the presence of intellectual disability. This condition is partially attributed to abnormalities found in the hippocampus of individuals with DS and in the murine model for DS, Ts65Dn. To check if all hippocampal areas were equally affected in 4-5 month adult Ts65Dn mice, we analysed the morphology of dentate gyrus granule cells and cornu ammonis pyramidal neurons using Sholl method on Golgi-Cox impregnated neurons. Structural plasticity has been analysed using immunohistochemistry for plasticity molecules followed by densitometric analysis (Brain Derived Neurotrophic Factor (BDNF), Polysialylated form of the Neural Cell Adhesion Molecule (PSA-NCAM) and the Growth Associated Protein 43 (GAP43)). We observed an impairment in the dendritic arborisation of granule cells, but not in the pyramidal neurons in the Ts65Dn mice. When we analysed the expression of molecules related to structural plasticity in trisomic mouse hippocampus, we observed a reduction in the expression of BDNF and PSA-NCAM, and an increment in the expression of GAP43. These alterations were restricted to the regions related to dentate granule cells suggesting an interrelation. Therefore the impairment in dendritic arborisation and molecular plasticity is not a general feature of all Down syndrome principal neurons. Pharmacological manipulations of the levels of plasticity molecules could provide a way to restore granule cell morphology and function.


Assuntos
Síndrome de Down/metabolismo , Síndrome de Down/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Plasticidade Neuronal , Neurônios/metabolismo , Neurônios/patologia , Fatores Etários , Animais , Biomarcadores/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Dendritos/metabolismo , Dendritos/patologia , Modelos Animais de Doenças , Síndrome de Down/genética , Proteína GAP-43/metabolismo , Predisposição Genética para Doença , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Masculino , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Fenótipo , Células Piramidais/metabolismo , Células Piramidais/patologia , Ácidos Siálicos/metabolismo
6.
San Salvador; s.n; 2017. 38 p. graf.
Tese em Espanhol | LILACS, BISSAL | ID: biblio-1179098

RESUMO

El presente trabajo recoge los datos de aislamiento microbiológico en las secreciones bronquiales recolectadas tanto por aspirado bronquial, entendido como aspiración de secreciones mediante una sonda de aspiración con vacío a través de tubo orotraqueal; como por fibrobroncoscopía, utilizando el fibrobroncoscopio flexible mediante toma de lavado bronquioalveolar, en aquellos pacientes con diagnóstico de neumonía asociada a ventilación mecánica, que estando ingresados en el servicio de Medicina 4 del Hospital General del Instituto Salvadoreño del Seguro Social (ISSS), desarrollaron insuficiencia respiratoria por causa no infecciosa y se colocaron en ventilación mecánica, con la posterior complicación infecciosa, que sucedieron durante el período del año 2015. Se contó con una identificación de las principales características clínicas y demográficas de los pacientes y la situación epidemiológica de pacientes que asistieron a este servicio, además de caracterizar el aislamiento bacteriológico de dichas patologías, pudiendo identificar los patógenos y la expresión fenotípica de resistencia antibiótica de las bacterias que afectan a la población de derechohabientes del instituto. Así, tener información de la flora predominante del servicio durante el período de investigación, lograr adecuar proyectos de seguimiento, y poder respaldar medidas de prevención y pautas terapéuticas en base a la evidencia encontrada en el servicio de hospitalización


Assuntos
Pneumonia , Respiração Artificial , Técnicas Microbiológicas , Medicina Interna
7.
Front Neurosci ; 10: 75, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973453

RESUMO

Down syndrome (DS) is caused by the presence of an extra copy of the chromosome 21 and it is the most common aneuploidy producing intellectual disability. Neural mechanisms underlying this alteration may include defects in the formation of neuronal networks, information processing and brain plasticity. The murine model for DS, Ts65Dn, presents reduced adult neurogenesis. This reduction has been suggested to underlie the hypocellularity of the hippocampus as well as the deficit in olfactory learning in the Ts65Dn mice. Similar alterations have also been observed in individuals with DS. To determine whether the impairment in adult neurogenesis is, in fact, responsible for the hypocellularity in the hippocampus and physiology of the olfactory bulb, we have analyzed cell proliferation and neuronal maturation in the two major adult neurogenic niches in the Ts656Dn mice: the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ). Additionally, we carried out a study to determine the survival rate and phenotypic fate of newly generated cells in both regions, injecting 5'BrdU and sacrificing the mice 21 days later, and analyzing the number and phenotype of the remaining 5'BrdU-positive cells. We observed a reduction in the number of proliferating (Ki67 positive) cells and immature (doublecortin positive) neurons in the subgranular and SVZ of Ts65Dn mice, but we did not observe changes in the number of surviving cells or in their phenotype. These data correlated with a lower number of apoptotic cells (cleaved caspase 3 positive) in Ts65Dn. We conclude that although adult Ts65Dn mice have a lower number of proliferating cells, it is compensated by a lower level of cell death. This higher survival rate in Ts65Dn produces a final number of mature cells similar to controls. Therefore, the reduction of adult neurogenesis cannot be held responsible for the neuronal hypocellularity in the hippocampus or for the olfactory learning deficit of Ts65Dn mice.

8.
Neurochem Res ; 40(1): 151-64, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25399236

RESUMO

Down Syndrome, with an incidence of one in 800 live births, is the most common genetic alteration producing intellectual disability. We have used the Ts65Dn model, that mimics some of the alterations observed in Down Syndrome. This genetic alteration induces an imbalance between excitation and inhibition that has been suggested as responsible for the cognitive impairment present in this syndrome. The hippocampus has a crucial role in memory processing and is an important area to analyze this imbalance. In this report we have analysed, in the hippocampus of Ts65Dn mice, the expression of synaptic markers: synaptophysin, vesicular glutamate transporter-1 and isoform 67 of the glutamic acid decarboxylase; and of different subtypes of inhibitory neurons (Calbindin D-28k, parvalbumin, calretinin, NPY, CCK, VIP and somatostatin). We have observed alterations in the inhibitory neuropil in the hippocampus of Ts65Dn mice. There was an excess of inhibitory puncta and a reduction of the excitatory ones. In agreement with this observation, we have observed an increase in the number of inhibitory neurons in CA1 and CA3, mainly interneurons expressing calbindin, calretinin, NPY and VIP, whereas parvalbumin cell numbers were not affected. These alterations in the number of interneurons, but especially the alterations in the proportion of the different types, may influence the normal function of inhibitory circuits and underlie the cognitive deficits observed in DS.


Assuntos
Síndrome de Down/patologia , Hipocampo/patologia , Interneurônios/patologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Síndrome de Down/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/metabolismo , Neurópilo/patologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
9.
Neurochem Int ; 75: 48-53, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24911951

RESUMO

Zinc is an essential trace element that is critical for a large number of structural proteins, enzymatic processes and transcription factors. In the brain, zinc ions are involved in synaptic transmission. The homeostasis of zinc is crucial for cell survival and function, and cells have developed a wide variety of systems to control zinc concentration. Alterations in free zinc concentration have been related with brain dysfunction. Down Syndrome individuals present alterations in free zinc concentration and in some of the proteins related with zinc homeostasis. We have analyzed the amount of free zinc and the zinc chelating protein metallothionein 3 in the astrocytes using primary cultures of the murine model Ts65Dn. We have observed a higher number of zinc positive spots in the cytoplasm of trisomic astrocytes but a decrease in the total concentration of total intracellular free zinc concentration (including the spots) respect to control astrocytes. Using FM1-43 staining, we found that the endocytic function remains unaltered. Therefore, a possible explanation for this lower concentration of free zinc could be the higher concentration of metallothionein 3 present in the cytoplasm of trisomic astrocytes. The blockade of metallothionein 3 expression using an specific siRNA induced an increase in the concentration of free zinc in basal conditions but failed to increase the uptake of zinc after incubation with zinc ions.


Assuntos
Astrócitos/metabolismo , Modelos Animais de Doenças , Síndrome de Down/metabolismo , Zinco/metabolismo , Animais , Células Cultivadas , Feminino , Homeostase , Camundongos , Camundongos Endogâmicos C3H
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...