Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 4941, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322134

RESUMO

Worldwide, health care professionals working in operating rooms (ORs) are exposed to electrocautery smoke on a daily basis. Aims of this study were to determine composition and concentrations of electrocautery smoke in the OR using mass spectrometry. Prospective observational study at a tertiary care academic center, involving 122 surgical procedures of which 84 were 1:1 computer randomized to smoke evacuation system (SES) versus no SES use. Irritating, toxic, carcinogenic and mutagenic VOCs were observed in OR air, with some exceeding permissible exposure limits (OSHA/NIOSH). Mean total concentration of harmful compounds was 272.69 ppb (± 189 ppb) with a maximum total concentration of harmful substances of 8991 ppb (at surgeon level, no SES). Maximum total VOC concentrations were 1.6 ± 1.2 ppm (minimally-invasive surgery) and 2.1 ± 1.5 ppm (open surgery), and total maximum VOC concentrations were 1.8 ± 1.3 ppm at the OR table 'at surgeon level' and 1.4 ± 1.0 ppm 'in OR room air' away from the operating table. Neither difference was statistically significant. In open surgery, SES significantly reduced maximum concentrations of specific VOCs at surgeon level, including aromatics and aldehydes. Our data indicate relevant exposure of health care professionals to volatile organic compounds in the OR. Surgical technique and distance to cautery devices did not significantly reduce exposure. SES reduced exposure to specific harmful VOC's during open surgery.Trial Registration Number: NCT03924206 (clinicaltrials.gov).


Assuntos
Exposição Ocupacional , Compostos Orgânicos Voláteis , Carcinógenos/análise , Eletrocoagulação/métodos , Exposição Ocupacional/análise , Salas Cirúrgicas , Estudos Prospectivos , Compostos Orgânicos Voláteis/análise
2.
Environ Sci Technol ; 56(4): 2213-2224, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35119266

RESUMO

Oxidation of the monoterpene Δ3-carene (C10H16) is a potentially important and understudied source of atmospheric secondary organic aerosol (SOA). We present chamber-based measurements of speciated gas and particle phases during photochemical oxidation of Δ3-carene. We find evidence of highly oxidized organic molecules (HOMs) in the gas phase and relatively low-volatility SOA dominated by C7-C10 species. We then use computational methods to develop the first stages of a Δ3-carene photochemical oxidation mechanism and explain some of our measured compositions. We find that alkoxy bond scission of the cyclohexyl ring likely leads to efficient HOM formation, in line with previous studies. We also find a surprising role for the abstraction of primary hydrogens from methyl groups, which has been calculated to be rapid in the α-pinene system, and suggest more research is required to determine if this is more general to other systems and a feature of autoxidation. This work develops a more comprehensive view of Δ3-carene photochemical oxidation products via measurements and lays out a suggested mechanism of oxidation via computationally derived rate coefficients.


Assuntos
Monoterpenos , Aerossóis/química , Monoterpenos Bicíclicos , Monoterpenos/química , Oxirredução
3.
Atmos Chem Phys ; 20(12): 8201-8225, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32983235

RESUMO

Atmospheric aerosols are a significant public health hazard and have substantial impacts on the climate. Secondary organic aerosols (SOAs) have been shown to phase separate into a highly viscous organic outer layer surrounding an aqueous core. This phase separation can decrease the partitioning of semi-volatile and low-volatile species to the organic phase and alter the extent of acid-catalyzed reactions in the aqueous core. A new algorithm that can determine SOA phase separation based on their glass transition temperature (T g), oxygen to carbon (O : C) ratio and organic mass to sulfate ratio, and meteorological conditions was implemented into the Community Multiscale Air Quality Modeling (CMAQ) system version 5.2.1 and was used to simulate the conditions in the continental United States for the summer of 2013. SOA formed at the ground/surface level was predicted to be phase separated with core-shell morphology, i.e., aqueous inorganic core surrounded by organic coating 65.4 % of the time during the 2013 Southern Oxidant and Aerosol Study (SOAS) on average in the isoprene-rich southeastern United States. Our estimate is in proximity to the previously reported ~ 70 % in literature. The phase states of organic coatings switched between semi-solid and liquid states, depending on the environmental conditions. The semi-solid shell occurring with lower aerosol liquid water content (western United States and at higher altitudes) has a viscosity that was predicted to be 102-1012 Pa s, which resulted in organic mass being decreased due to diffusion limitation. Organic aerosol was primarily liquid where aerosol liquid water was dominant (eastern United States and at the surface), with a viscosity < 102 Pa s. Phase separation while in a liquid phase state, i.e., liquid-liquid phase separation (LLPS), also reduces reactive uptake rates relative to homogeneous internally mixed liquid morphology but was lower than aerosols with a thick viscous organic shell. The sensitivity cases performed with different phase-separation parameterization and dissolution rate of isoprene epoxydiol (IEPOX) into the particle phase in CMAQ can have varying impact on fine particulate matter (PM2.5) organic mass, in terms of bias and error compared to field data collected during the 2013 SOAS. This highlights the need to better constrain the parameters that govern phase state and morphology of SOA, as well as expand mechanistic representation of multiphase chemistry for non-IEPOX SOA formation in models aided by novel experimental insights.

4.
Acc Chem Res ; 53(8): 1415-1426, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32648739

RESUMO

ConspectusThe complex array of sources and transformations of organic carbonaceous material that comprises an important fraction of atmospheric fine particle mass, known as organic aerosol, has presented a long running challenge for accurate predictions of its abundance, distribution, and sensitivity to anthropogenic activities. Uncertainties about changes in atmospheric aerosol particle sources and abundance over time translate to uncertainties in their impact on Earth's climate and their response to changes in air quality policy. One limitation in our understanding of organic aerosol has been a lack of comprehensive measurements of its molecular composition and volatility, which can elucidate sources and processes affecting its abundance. Herein we describe advances in the development and application of the Filter Inlet for Gases and Aerosols (FIGAERO) coupled to field-deployable High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometers (HRToF-CIMS). The FIGAERO HRToFCIMS combination broadly probes gas and particulate OA molecular composition by using programmed thermal desorption of particles collected on a Teflon filter with subsequent detection and speciation of desorbed vapors using inherently quantitative selected-ion chemical ionization. The thermal desorption provides a means to obtain quantitative insights into the volatility of particle components and thus the physicochemical nature of the organic material that will govern its evolution in the atmosphere.In this Account, we discuss the design and operation of the FIGAERO, when coupled to the HRToF-CIMS, for quantitative characterization of the molecular-level composition and effective volatility of organic aerosol in the laboratory and field. We provide example insights gleaned from its deployment, which improve our understanding of organic aerosol sources and evolution. Specifically, we connect thermal desorption profiles to the effective equilibrium saturation vapor concentration and enthalpy of vaporization of detected components. We also show how application of the FIGAERO HRToF-CIMS to environmental simulation chamber experiments and the field provide new insights and constraints on the chemical mechanisms governing secondary organic aerosol formation and dynamic evolution. We discuss the associated challenges of thermal decomposition during desorption and calibration of both the volatility axis and signal. We also illustrate how the FIGAERO HRToF-CIMS can provide additional insights into organic aerosol through isothermal evaporation experiments as well as for detection of ultrafine particulate composition. We conclude with a description of future opportunities and needs for its ability to further organic aerosol science.

5.
Anal Chem ; 92(14): 9823-9829, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32520529

RESUMO

2,4,6-Trichloroanisole (TCA) contamination of wine determines huge economic losses for the wine industry estimated to amount to several billion dollars yearly. Over 50 years of studies have determined that this problem is often caused by TCA contamination of the cork stopper, which releases TCA into the wine. The human threshold for TCA is extremely low. A wine contaminated by 1-2 ng/L TCA can be perceived as tainted. Contaminations with <0.5 ng/L TCA are commonly considered negligible and are not perceivable. The possibility of prescreening cork stoppers for TCA contamination would be an enormous advantage. Therefore, the demand for a fast, nondestructive method capable of quantifying the TCA contamination in cork stoppers is impelling. Vastly used analytical methods have so far struggled to provide a fast and reliable solution, whereas sensory analysis by trained panelists is expensive and time-consuming. Here we propose a novel approach based on chemical ionization-time-of-flight (CI-TOF) mass spectrometry employing the "Vocus" ion source and ion-molecule reactor. The technique proved capable of nondestructively quantifying TCA contamination in a single cork stopper in 3 s, with a limit of quantification below the perception threshold. A real test on the industrial scale, quantifying TCA contamination in more than 10000 cork stoppers in a few hours is presented, representing the largest data set of TCA analysis on cork stoppers within the literature and proving the possibility to apply the technique in an industrial environment. The correlation with standard methods for releasable TCA quantification is also discussed.


Assuntos
Anisóis/química , Espectrometria de Massas/métodos , Vinho/análise , Contaminação de Alimentos/análise , Humanos , Paladar
6.
ACS Earth Space Chem ; 4(3): 391-402, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32328536

RESUMO

Organic aerosol (OA) constitutes a significant fraction of atmospheric fine particle mass. However, the precursors and chemical processes responsible for a majority of OA are rarely conclusively identified. We use online observations of hundreds of simultaneously measured molecular components obtained from 15 laboratory OA formation experiments with constraints on their effective saturation vapor concentrations to attribute the VOC precursors and subsequent chemical pathways giving rise to the vast majority of OA mass measured in two forested regions. We find that precursors and chemical pathways regulating OA composition and volatility are dynamic over hours to days, with their variations driven by coupled interactions between multiple oxidants. The extent of physical and photochemical aging, and its modulation by NOx, were key to a uniquely comprehensive combined composition-volatility description of OA. Our findings thus provide some of the most complete mechanistic-level guidance to the development of OA descriptions in air quality and Earth system models.

7.
Nat Commun ; 10(1): 4442, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31570718

RESUMO

Particles formed in the atmosphere via nucleation provide about half the number of atmospheric cloud condensation nuclei, but in many locations, this process is limited by the growth of the newly formed particles. That growth is often via condensation of organic vapors. Identification of these vapors and their sources is thus fundamental for simulating changes to aerosol-cloud interactions, which are one of the most uncertain aspects of anthropogenic climate forcing. Here we present direct molecular-level observations of a distribution of organic vapors in a forested environment that can explain simultaneously observed atmospheric nanoparticle growth from 3 to 50 nm. Furthermore, the volatility distribution of these vapors is sufficient to explain nanoparticle growth without invoking particle-phase processes. The agreement between observed mass growth, and the growth predicted from the observed mass of condensing vapors in a forested environment thus represents an important step forward in the characterization of atmospheric particle growth.

8.
Proc Natl Acad Sci U S A ; 115(32): 8110-8115, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30037992

RESUMO

Sulfate ([Formula: see text]) and nitrate ([Formula: see text]) account for half of the fine particulate matter mass over the eastern United States. Their wintertime concentrations have changed little in the past decade despite considerable precursor emissions reductions. The reasons for this have remained unclear because detailed observations to constrain the wintertime gas-particle chemical system have been lacking. We use extensive airborne observations over the eastern United States from the 2015 Wintertime Investigation of Transport, Emissions, and Reactivity (WINTER) campaign; ground-based observations; and the GEOS-Chem chemical transport model to determine the controls on winter [Formula: see text] and [Formula: see text] GEOS-Chem reproduces observed [Formula: see text]-[Formula: see text]-[Formula: see text] particulate concentrations (2.45 µg [Formula: see text]) and composition ([Formula: see text]: 47%; [Formula: see text]: 32%; [Formula: see text]: 21%) during WINTER. Only 18% of [Formula: see text] emissions were regionally oxidized to [Formula: see text] during WINTER, limited by low [H2O2] and [OH]. Relatively acidic fine particulates (pH∼1.3) allow 45% of nitrate to partition to the particle phase. Using GEOS-Chem, we examine the impact of the 58% decrease in winter [Formula: see text] emissions from 2007 to 2015 and find that the H2O2 limitation on [Formula: see text] oxidation weakened, which increased the fraction of [Formula: see text] emissions oxidizing to [Formula: see text] Simultaneously, NOx emissions decreased by 35%, but the modeled [Formula: see text] particle fraction increased as fine particle acidity decreased. These feedbacks resulted in a 40% decrease of modeled [[Formula: see text]] and no change in [[Formula: see text]], as observed. Wintertime [[Formula: see text]] and [[Formula: see text]] are expected to change slowly between 2015 and 2023, unless [Formula: see text] and NOx emissions decrease faster in the future than in the recent past.

9.
Proc Natl Acad Sci U S A ; 115(9): 2038-2043, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440409

RESUMO

The chemical complexity of atmospheric organic aerosol (OA) has caused substantial uncertainties in understanding its origins and environmental impacts. Here, we provide constraints on OA origins through compositional characterization with molecular-level details. Our results suggest that secondary OA (SOA) from monoterpene oxidation accounts for approximately half of summertime fine OA in Centreville, AL, a forested area in the southeastern United States influenced by anthropogenic pollution. We find that different chemical processes involving nitrogen oxides, during days and nights, play a central role in determining the mass of monoterpene SOA produced. These findings elucidate the strong anthropogenic-biogenic interaction affecting ambient aerosol in the southeastern United States and point out the importance of reducing anthropogenic emissions, especially under a changing climate, where biogenic emissions will likely keep increasing.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/química , Monoterpenos/química , Estações do Ano , Sudeste dos Estados Unidos , Fatores de Tempo
10.
J Geophys Res Atmos ; 123(19): 11225-11237, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30997299

RESUMO

We present airborne observations of gaseous reactive halogen species (HCl, Cl2, ClNO2, Br2,BrNO2, and BrCl), sulfur dioxide (SO2), and nonrefractory fine particulate chloride (pCl) and sulfate(pSO4) in power plant exhaust. Measurements were conducted during the Wintertime INvestigation of Transport, Emissions, and Reactivity campaign in February-March of 2015 aboard the NCAR-NSF C-130 aircraft. Fifty air mass encounters were identified in which SO2 levels were elevated ~5 ppb above ambient background levels and in proximity to operational power plants. Each encounter was attributed to one or more potential emission sources using a simple wind trajectory analysis. In case studies, we compare measured emission ratios to those reported in the 2011 National Emissions Inventory and present evidence of the conversion of HCl emitted from power plants to ClNO2. Taking into account possible chemical conversion downwind, there was general agreement between the observed and reported HCl: SO2 emission ratios. Reactive bromine species (Br2, BrNO2, and/or BrCl) were detected in the exhaust of some coal-fired power plants, likely related to the absence of wet flue gas desulfurization emission control technology. Levels of bromine species enhanced in some encounters exceeded those expected assuming all of the native bromide in coal was released to the atmosphere, though there was no reported use of bromide salts (as a way to reduce mercury emissions) during Wintertime INvestigation of Transport, Emissions, and Reactivity observations. These measurements represent the first ever in-flight observations of reactive gaseous chlorine and bromine containing compounds present in coal-fired power plant exhaust.

11.
Environ Sci Technol ; 51(9): 4978-4987, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28388039

RESUMO

We report chamber measurements of secondary organic aerosol (SOA) formation from isoprene photochemical oxidation, in which radical concentrations were systematically varied and the molecular composition of semi- to low-volatility gases and SOA were measured online. Using a detailed chemical kinetics box model, we find that to explain the behavior of low-volatility products and SOA mass yields relative to input H2O2 concentrations, the second-generation dihydroxy hydroperoxy peroxy radical (C5H11O6·) must undergo an intramolecular H-shift with a net forward rate constant of order 0.1 s-1 or higher. This finding is consistent with quantum chemical calculations that suggest a net forward rate constant of 0.3-0.9 s-1. Furthermore, these calculations suggest that the dominant product of this isomerization is a dihydroxy hydroperoxy epoxide (C5H10O5), which is expected to have a saturation vapor pressure ∼2 orders of magnitude higher, as determined by group-contribution calculations, than the dihydroxy dihydroperoxide, ISOP(OOH)2(C5H12O6), a major product of the peroxy radical reacting with HO2. These results provide strong constraints on the likely volatility distribution of isoprene oxidation products under atmospheric conditions and, thus, on the importance of nonreactive gas-particle partitioning of isoprene oxidation products as an SOA source.


Assuntos
Aerossóis/química , Peróxido de Hidrogênio , Compostos de Epóxi/química , Oxirredução , Volatilização
12.
Environ Sci Technol ; 50(18): 9872-80, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27548285

RESUMO

With a large global emission rate and high reactivity, isoprene has a profound effect upon atmospheric chemistry and composition. The atmospheric pathways by which isoprene converts to secondary organic aerosol (SOA) and how anthropogenic pollutants such as nitrogen oxides and sulfur affect this process are subjects of intense research because particles affect Earth's climate and local air quality. In the absence of both nitrogen oxides and reactive aqueous seed particles, we measure SOA mass yields from isoprene photochemical oxidation of up to 15%, which are factors of 2 or more higher than those typically used in coupled chemistry climate models. SOA yield is initially constant with the addition of increasing amounts of nitric oxide (NO) but then sharply decreases for input concentrations above 50 ppbv. Online measurements of aerosol molecular composition show that the fate of second-generation RO2 radicals is key to understanding the efficient SOA formation and the NOx-dependent yields described here and in the literature. These insights allow for improved quantitative estimates of SOA formation in the preindustrial atmosphere and in biogenic-rich regions with limited anthropogenic impacts and suggest that a more-complex representation of NOx-dependent SOA yields may be important in models.


Assuntos
Aerossóis , Atmosfera/química , Poluentes Atmosféricos , Óxido Nítrico/química , Óxidos de Nitrogênio , Oxirredução
13.
Proc Natl Acad Sci U S A ; 113(6): 1516-21, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26811465

RESUMO

Speciated particle-phase organic nitrates (pONs) were quantified using online chemical ionization MS during June and July of 2013 in rural Alabama as part of the Southern Oxidant and Aerosol Study. A large fraction of pONs is highly functionalized, possessing between six and eight oxygen atoms within each carbon number group, and is not the common first generation alkyl nitrates previously reported. Using calibrations for isoprene hydroxynitrates and the measured molecular compositions, we estimate that pONs account for 3% and 8% of total submicrometer organic aerosol mass, on average, during the day and night, respectively. Each of the isoprene- and monoterpenes-derived groups exhibited a strong diel trend consistent with the emission patterns of likely biogenic hydrocarbon precursors. An observationally constrained diel box model can replicate the observed pON assuming that pONs (i) are produced in the gas phase and rapidly establish gas-particle equilibrium and (ii) have a short particle-phase lifetime (∼2-4 h). Such dynamic behavior has significant implications for the production and phase partitioning of pONs, organic aerosol mass, and reactive nitrogen speciation in a forested environment.

14.
Environ Sci Technol ; 48(11): 6309-17, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24800638

RESUMO

A high-resolution time-of-flight chemical-ionization mass spectrometer (HR-ToF-CIMS) using Iodide-adducts has been characterized and deployed in several laboratory and field studies to measure a suite of organic and inorganic atmospheric species. The large negative mass defect of Iodide, combined with soft ionization and the high mass-accuracy (<20 ppm) and mass-resolving power (R>5500) of the time-of-flight mass spectrometer, provides an additional degree of separation and allows for the determination of elemental compositions for the vast majority of detected ions. Laboratory characterization reveals Iodide-adduct ionization generally exhibits increasing sensitivity toward more polar or acidic volatile organic compounds. Simultaneous retrieval of a wide range of mass-to-charge ratios (m/Q from 25 to 625 Th) at a high frequency (>1 Hz) provides a comprehensive view of atmospheric oxidative chemistry, particularly when sampling rapidly evolving plumes from fast moving platforms like an aircraft. We present the sampling protocol, detection limits and observations from the first aircraft deployment for an instrument of this type, which took place aboard the NOAA WP-3D aircraft during the Southeast Nexus (SENEX) 2013 field campaign.


Assuntos
Poluentes Atmosféricos/química , Compostos Inorgânicos/química , Iodetos/química , Espectrometria de Massas/métodos , Compostos Orgânicos/química , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Compostos Inorgânicos/análise , Limite de Detecção , Compostos Orgânicos/análise
15.
Environ Sci Technol ; 47(12): 6316-24, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23710733

RESUMO

We show for the first time quantitative online measurements of five nitrated phenol (NP) compounds in ambient air (nitrophenol C6H5NO3, methylnitrophenol C7H7NO3, nitrocatechol C6H5NO4, methylnitrocatechol C7H7NO4, and dinitrophenol C6H4N2O5) measured with a micro-orifice volatilization impactor (MOVI) high-resolution chemical ionization mass spectrometer in Detling, United Kingdom during January-February, 2012. NPs absorb radiation in the near-ultraviolet (UV) range of the electromagnetic spectrum and thus are potential components of poorly characterized light-absorbing organic matter ("brown carbon") which can affect the climate and air quality. Total NP concentrations varied between less than 1 and 98 ng m(-3), with a mean value of 20 ng m(-3). We conclude that NPs measured in Detling have a significant contribution from biomass burning with an estimated emission factor of 0.2 ng (ppb CO)(-1). Particle light absorption measurements by a seven-wavelength aethalometer in the near-UV (370 nm) and literature values of molecular absorption cross sections are used to estimate the contribution of NP to wood burning brown carbon UV light absorption. We show that these five NPs are potentially important contributors to absorption at 370 nm measured by an aethalometer and account for 4 ± 2% of UV light absorption by brown carbon. They can thus affect atmospheric radiative transfer and photochemistry and with that climate and air quality.


Assuntos
Carbono/química , Fenóis/química , Madeira , Monitoramento Ambiental , Estações do Ano , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...