Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IUBMB Life ; 67(8): 634-44, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26099053

RESUMO

A gradual decline in insulin response is known to precede the onset of type 1 diabetes (T1D). To track age-related changes in the ß-cell function of nonobese diabetic (NOD) mice, the most commonly used animal model for T1D, and to establish differences between those who do and do not become hyperglycemic, we performed a long-term longitudinal oral glucose tolerance test (OGTT) study (10-42 weeks) in combination with immunofluorescence imaging of islet morphology and cell proliferation. We observed a clear biphasic decline in insulin secretion (AUC0-30 min ) even in euglycemic animals. A first phase (10-28 weeks) consisted of a relatively rapid decline and paralleled diabetes development in the same cohort of animals. This was followed by a second phase (29-42 weeks) during which insulin secretion declined much slower while no additional animals became diabetic. Blood glucose profiles showed a corresponding, but less pronounced change: the area under the concentration curve (AUC0-150 min ) increased with age, and fit with a bilinear model indicated a rate-change in the trendline around 28 weeks. In control NOD scids, no such changes were observed. Islet morphology also changed with age as islets become surrounded by mononuclear infiltrates, and, in all mice, islets with immune cell infiltration around them showed increased ß-cell proliferation. In conclusion, insulin secretion declines in a biphasic manner in all NOD mice. This trend, as well as increased ß-cell proliferation, is present even in the NODs that never become diabetic, whereas, it is absent in control NOD scid mice.


Assuntos
Envelhecimento/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Envelhecimento/patologia , Animais , Glicemia , Proliferação de Células , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/patologia , Modelos Animais de Doenças , Teste de Tolerância a Glucose , Humanos , Secreção de Insulina , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Endogâmicos NOD
2.
Cancers (Basel) ; 7(1): 143-78, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25599228

RESUMO

The relationship between obesity and breast cancer (BC) has focused on serum factors. However, the mammary gland contains adipose tissue (AT) which may enable the crosstalk between adipocytes and tumor cells contributing to tumor macrophage recruitment. We hypothesize that the breast AT (bAT) is inflamed in obese females and plays a major role in breast cancer development. The effects of this interplay on macrophage chemotaxis were examined in vitro, using co-cultures of mouse macrophages, mammary tumor cells and adipocytes. Macrophages were exposed to the adipocyte and tumor paracrine factors leptin, CCL2 and lauric acid (alone or in combinations). In cell supernatants Luminex identified additional molecules with chemotactic and other pro-tumor functions. Focus on the adipokine leptin, which has been shown to have a central role in breast cancer pathogenesis, indicated it modulates macrophage phenotypes and functions. In vivo experiments demonstrate that mammary tumors from obese mice are larger and that bAT from obese tumor-bearers contains higher numbers of macrophages/CLS and hypertrophic adipocytes than bAT from lean tumor-bearers, thus confirming it is more inflamed. Also, bAT distal from the tumor is more inflamed in obese than in lean mice. Our results reveal that bAT plays a role in breast cancer development in obesity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...