Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 98(12): 1881-5, 2008 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-18542062

RESUMO

DNA methylation and the machinery involved in epigenetic regulation are key elements in the maintenance of cellular homeostasis. Epigenetic mechanisms are involved in embryonic development and the establishment of tissue-specific expression, X-chromosome inactivation and imprinting patterns, and maintenance of chromosome stability. The balance between all the enzymes and factors involved in DNA methylation and its interpretation by different groups of nuclear factors is crucial for normal cell behaviour. In cancer and other diseases, misregulation of epigenetic marks is a common feature, also including DNA methylation and histone post-translational modifications. In this scenario, it is worth mentioning a family of proteins characterized by the presence of a methyl-CpG-binding domain (MBDs) that are involved in interpreting the information encoded by DNA methylation and the recruitment of the enzymes responsible for establishing a silenced state of the chromatin. The generation of novel aberrantly hypermethylated regions during cancer development and progression makes MBD proteins interesting targets for their biological and clinical implications.


Assuntos
Metilação de DNA , Neoplasias/metabolismo , Proteínas/metabolismo , Ilhas de CpG , Epigênese Genética , Humanos , Neoplasias/genética , Ligação Proteica
2.
Oncogene ; 27(25): 3556-66, 2008 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-18223687

RESUMO

Methyl-cytosine-phosphate-guanine (CpG)-binding domain (MBD) proteins are bound to hypermethylated promoter CpG islands of tumor suppressor genes in human cancer cells, although a direct causal relationship at the genome-wide level between MBD presence and gene silencing remains to be demonstrated. To this end, we have inhibited the expression of MBD proteins in HeLa cells by short hairpin RNAs; and studied the functional consequences of MBD depletion using microarray-based expression analysis in conjunction with extensive bisulfite genomic sequencing and chromatin immunoprecipitation. The removal of MBDs results in a release of gene silencing associated with a loss of MBD occupancy in 5'-CpG islands without any change in the DNA methylation pattern. Our results unveil new targets for epigenetic inactivation mediated by MBDs in transformed cells, such as the cell adhesion protein gamma-parvin and the fibroblast growth factor 19, where we also demonstrate their bona fide tumor suppressor features. Our data support a fundamental role for MBD proteins in the direct maintenance of transcriptional repression of tumor suppressors and identify new candidate genes for epigenetic disruption in cancer cells.


Assuntos
Ilhas de CpG , Epigênese Genética , Inativação Gênica , Genes Supressores de Tumor , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Metilação de DNA , Fatores de Crescimento de Fibroblastos/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Ligação Proteica , Estrutura Terciária de Proteína , Interferência de RNA , RNA Interferente Pequeno/metabolismo
3.
Br J Cancer ; 98(2): 466-73, 2008 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-18087279

RESUMO

CpG island arrays represent a high-throughput epigenomic discovery platform to identify global disease-specific promoter hypermethylation candidates along bladder cancer progression. DNA obtained from 10 pairs of invasive bladder tumours were profiled vs their respective normal urothelium using differential methylation hybridisation on custom-made CpG arrays (n=12 288 clones). Promoter hypermethylation of 84 clones was simultaneously shown in at least 70% of the tumours. SOX9 was selected for further validation by bisulphite genomic sequencing and methylation-specific polymerase chain reaction in bladder cancer cells (n=11) and primary bladder tumours (n=101). Hypermethylation was observed in bladder cancer cells and associated with lack of gene expression, being restored in vitro by a demethylating agent. In primary bladder tumours, SOX9 hypermethylation was present in 56.4% of the cases. Moreover, SOX9 hypermethylation was significantly associated with tumour grade and overall survival. Thus, this high-throughput epigenomic strategy has served to identify novel hypermethylated candidates in bladder cancer. In vitro analyses supported the role of methylation in silencing SOX9 gene. The association of SOX9 hypermethylation with tumour progression and clinical outcome suggests its relevant clinical implications at stratifying patients affected with bladder cancer.


Assuntos
Ilhas de CpG , Metilação de DNA , Proteínas de Grupo de Alta Mobilidade/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Transcrição/genética , Neoplasias da Bexiga Urinária/genética , Sequência de Bases , Linhagem Celular Tumoral , Progressão da Doença , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Análise por Pareamento , Dados de Sequência Molecular , Interferência de RNA , Fatores de Transcrição SOX9 , Análise de Sobrevida , Neoplasias da Bexiga Urinária/mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...