Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38475264

RESUMO

Waste carbon fibre-reinforced plastics were recycled by pyrolysis followed by a thermo-catalytic treatment in order to achieve both fibre and resin recovery. The conventional pyrolysis of this waste produced unusable gas and hazardous liquid streams, which made necessary the treatment of the pyrolysis vapours. In this work, the vapours generated from pyrolysis were valorised thermochemically. The thermal treatment of the pyrolysis vapours was performed at 700 °C, 800 °C and 900 °C, and the catalytic treatment was tested at 700 °C and 800 °C with two Ni-based catalysts, one commercial and one homemade over a non-conventional olivine support. The catalysts were deeply characterised, and both had low surface area (99 m2/g and 4 m2/g, respectively) with low metal dispersion. The thermal treatment of the pyrolysis vapours at 900 °C produced high gas quantity (6.8 wt%) and quality (95.5 vol% syngas) along with lower liquid quantity (13.3 wt%) and low hazardous liquid (92.1 area% water). The Ni-olivine catalyst at the lowest temperature, 700 °C, allowed us to obtain good gas results (100% syngas), but the liquid was not as good (only 58.4 area% was water). On the other hand, the Ni commercial catalyst at 800 °C improved both the gas and liquid phases, producing 6.4 wt% of gas with 93 vol% of syngas and 13.6 wt% of liquid phase with a 97.5 area% of water. The main reaction mechanisms observed in the treatment of pyrolysis vapours were cracking, dry and wet reforming and the Boudouard reaction.

2.
Materials (Basel) ; 16(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37763583

RESUMO

In this work, the low-temperature pyrolysis of a real plastic mixture sample collected at a WEEE-authorised recycling facility has been investigated. The sample was pyrolysed in a batch reactor in different temperature and residence time conditions and auto-generated pressure by following a factorial design, with the objective of maximising the liquid (oil) fraction. Furthermore, the main polymers constituting the real sample were also pyrolysed in order to understand their role in the generation of oil. The pyrolysis oils were characterised and compared with commercial fuel oil number 6. The results showed that in comparison to commercial fuel oil, pyrolysis oils coming from WEEE plastic waste had similar heating values, were lighter and less viscous and presented similar toxicity profiles in fumes of combustion.

3.
ChemSusChem ; 16(23): e202301053, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37532675

RESUMO

Over the last years, hard carbon (HC) has been the most promising anode material for sodium-ion batteries due to its low voltage plateau, low cost and sustainability. In this study, biomass waste (spent coffee grounds, sunflower seed shells and rose stems) was investigated as potential material for hard carbon preparation combining a two-step method consisting of on hydrothermal carbonization (HTC), to remove the inorganic impurities and increase the carbon content, and a subsequent pyrolysis process. The use of HTC as pretreatment prior to pyrolysis improves the specific capacity in all the materials compared to the ones directly pyrolyzed by more than 100 % at high C-rates. The obtained capacity ranging between 210 and 280 mAh g-1 at C/15 is similar to the values reported in literature for biomass-based hard carbons. Overall, HC obtained from sunflower seed shell performs better than that obtained from the other precursors with an initial Coulombic efficiency (ICE) of 76 % and capacities of 120 mAh g-1 during 1000 cycles at C with a high capacity retention of 86-93 %.

4.
Polymers (Basel) ; 14(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35160542

RESUMO

The aim of this paper is for the production of oils processed in refineries to come from the pyrolysis of real waste from the high plastic content rejected by the recycling industry of the Basque Country (Spain). Concretely, the rejected waste streams were collected from (1) a light packaging waste sorting plant, (2) the paper recycling industry, and (3) a waste treatment plant of electrical and electronic equipment (WEEE). The influence of pre-treatments (mechanical separation operations) and temperature on the yield and quality of the liquid fraction were evaluated. In order to study the pre-treatment effect, the samples were pyrolyzed at 460 °C for 1 h. As pre-treatments concentrate on the suitable fraction for pyrolysis and reduce the undesirable materials (metals, PVC, PET, inorganics, cellulosic materials), they improve the yield to liquid products and considerably reduce the halogen content. The sample with the highest polyolefin content achieved the highest liquid yield (70.6 wt.% at 460 °C) and the lowest chlorine content (160 ppm) among the investigated samples and, therefore, was the most suitable liquid to use as refinery feedstock. The effect of temperature on the pyrolysis of this sample was studied in the range of 430-490 °C. As the temperature increased the liquid yield increased and solid yield decreased, indicating that the conversion was maximized. At 490 °C, the pyrolysis oil with the highest calorific value (44.3 MJ kg-1) and paraffinic content (65% area), the lowest chlorine content (128 ppm) and more than 50 wt.% of diesel was obtained.

5.
Polymers (Basel) ; 13(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34771364

RESUMO

The use of alternative fuels derived from residues in energy-intensive industries that rely on fossil fuels can cause considerable energy cost savings, but also significant environmental benefits by conserving non-renewable resources and reducing waste disposal. However, the switching from conventional to alternative fuels is challenging for industries, which require a sound understanding of the properties and combustion characteristics of the alternative fuel, in order to adequately adapt their industrial processes and equipment for its utilization. In this work, a solid recovered fuel (SRF) obtained from the polymeric fraction of an automotive shredder residue is tested for use as an alternative fuel for scrap preheating in an aluminium refinery. The material and chemical composition of the SRF has been extensively characterized using proximate and ultimate analyses, calorific values and thermal degradation studies. Considering the calorific value and the chlorine and mercury contents measured, the SRF can be designated as class code NCV 1; Cl 2; Hg 2 (EN ISO 21640:2021). The combustion of the SRF was studied in a laboratory-scale pilot plant, where the effects of temperature, flow, and an oxidizer were determined. The ash remaining after combustion, the collected liquid, and the generated gas phase were analysed in each test. It was observed that increasing the residence time of the gas at a high temperature allowed for a better combustion of the SRF. The oxidizer type was important for increasing the total combustion of the vapour compounds generated during the oxidation of the SRF and for avoiding uncontrolled combustion.

6.
Polymers (Basel) ; 13(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34641223

RESUMO

This paper presents a process where carbon fibers and hydrogen can be recovered simultaneously through a two-stage thermal treatment of an epoxy-carbon fiber composite. For this purpose, some pieces of epoxy resin reinforced with carbon fiber fabrics have been fabricated and, after curing, have been pyrolyzed in an installation consisting of two reactors. In the first one, the thermal decomposition of the resin takes place, and in the second one, the gases and vapors coming from the first reactor are thermally treated. Once this process is completed, the solid generated is oxidized with air to eliminate the resin residues and carbonaceous products from the fibers surface. The recovered carbon fiber fabrics have been reused to make new cured parts and their electrical and mechanical properties have been measured. The results show that it is possible to obtain carbon fiber fabrics that can be processed as they leave the recycling process and that retain 80% of the tensile modulus, 70% of the flexural strength, and 50% of the interlaminar shear strength. At the same time, a gaseous stream with more than 66% by volume of hydrogen can be obtained, reaching a maximum of 81.7%.

7.
Top Curr Chem (Cham) ; 377(6): 36, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31728773

RESUMO

Thermochemical lignin conversion processes can be described as complex reaction networks involving not only de-polymerization and re-polymerization reactions, but also chemical transformations of the depolymerized mono-, di-, and oligomeric compounds. They typically result in a product mixture consisting of a gaseous, liquid (i.e., mono-, di-, and oligomeric products), and solid phase. Consequently, researchers have developed a common strategy to simplify this issue by replacing lignin with simpler, but still representative, lignin model compounds. This strategy is typically applied to the elucidation of reaction mechanisms and the exploration of novel lignin conversion approaches. In this review, we present a general overview of the latest advances in the principal thermochemical processes applied for the conversion of lignin model compounds using heterogeneous catalysts. This review focuses on the most representative lignin conversion methods, i.e., reductive, oxidative, pyrolytic, and hydrolytic processes. An additional subchapter on the reforming of pyrolysis oil model compounds has also been included. Special attention will be given to those research papers using "green" reactants (i.e., H2 or renewable hydrogen donor molecules in reductive processes or air/O2 in oxidative processes) and solvents, although less environmentally friendly chemicals will be also considered. Moreover, the scope of the review is limited to those most representative lignin model compounds and to those reaction products that are typically targeted in lignin valorization.


Assuntos
Lignina/química , Biomassa , Catálise , Dimerização , Temperatura Alta , Hidrogênio/química , Hidrogênio/metabolismo , Hidrólise , Oxirredução , Pirólise
8.
Materials (Basel) ; 9(1)2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-28787805

RESUMO

Biomass is one of the most suitable options to be used as renewable energy source due to its extensive availability and its contribution to reduce greenhouse gas emissions. Pyrolysis of lignocellulosic biomass under appropriate conditions (slow heating rate and high temperatures) can produce a quality solid product, which could be applicable to several metallurgical processes as reducing agent (biocoke or bioreducer). Two woody biomass samples (olives and eucalyptus) were pyrolyzed to produce biocoke. These biocokes were characterized by means of proximate and ultimate analysis, real density, specific surface area, and porosity and were compared with three commercial reducing agents. Finally, reactivity tests were performed both with the biocokes and with the commercial reducing agents. Bioreducers have lower ash and sulfur contents than commercial reducers, higher surface area and porosity, and consequently, much higher reactivity. Bioreducers are not appropriate to be used as top burden in blast furnaces, but they can be used as fuel and reducing agent either tuyére injected at the lower part of the blast furnace or in non-ferrous metallurgical processes where no mechanical strength is needed as, for example, in rotary kilns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...