Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 237(Pt 1): 116914, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37597824

RESUMO

To investigate the influence of high-pressure and shear effects introduced by a concentrated oxygen supply system on the membrane filtration performance, a laboratory-scale membrane bioreactor (MBR) fed artificial municipal wastewater was operated continuously for 80 days in four phases equipped with different aerations systems: (P1) bubble diffusers (days 0-40), (P2) concentrated oxygen supply system, the supersaturated dissolved oxygen (SDOX) (days 41-56), (P3) bubble diffusers (days 57-74), and (P4) SDOX (days 75-80). Various sludge physical-chemical parameters, visual inspection of the membrane, and permeability evaluations were performed. Results showed that the high-pressure effects contributed to fouling of the membranes compared to the bubble diffuser aeration system. Biofouling by microorganisms appeared to be the main contributor to the cake layer when bubble diffusers were used, while fouling by organic matter seemed to be the main contributor to the cake layer when SDOX was used. Small particle size distribution (PSD) (ranging from 1 to 10 and 1-50 µm in size) fractions are a main parameter affecting the intense fouling of membranes (e.g., formation of a dense and thin cake layer). However, PSD alone cannot explain the worsened membrane fouling tendency. Therefore, it can be assumed that a combination of several factors (which certainly includes PSD) led to the severe membrane fouling caused by the high-pressure and shear.

2.
Water Res ; 229: 119446, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36516560

RESUMO

Ca. Accumulibacter was the predominant microorganism (relative FISH bio-abundance of 67 ± 5%) in a lab-scale sequential batch reactor that accomplished enhanced biological phosphorus removal (EBPR) while using glucose and acetate as the carbon sources (1:1 COD-based ratio). Both organic compounds were completely anaerobically consumed. The reactor's performance in terms of P/C ratio, phosphorous release and uptake, and overall kinetic and stoichiometric parameters were on the high end of the reported spectrum for EBPR systems (100:9.3 net mg phosphate removal per mg COD consumed when using glucose and acetate in a 1:1 ratio). The batch tests showed that, to the best of our knowledge, this is the first time a reactor enriched with Ca. Accumulibacter can putatively utilize glucose as the sole carbon source to biologically remove phosphate (COD:P (mg/mg) removal ratio of 100:6.3 when using only glucose). Thus, this research proposes that Ca. Accumulibacter directly anaerobically stored the fed glucose primarily as glycogen by utilizing the ATP provided via the hydrolysis of poly-P and secondarily as PHA by balancing its ATP utilization (glycogen generation) and formation (PHA storage). Alternative hypotheses are also discussed. The reported findings could challenge the conventional theories of glucose assimilation by Ca. Accumulibacter, and can be of significance for the biological removal of phosphorus from wastewaters with high contents of fermentable compounds or low VFAs.


Assuntos
Reatores Biológicos , Glucose , Glicogênio/metabolismo , Fósforo/metabolismo , Fosfatos , Carbono/metabolismo , Acetatos/metabolismo , Trifosfato de Adenosina
3.
Bioresour Technol ; 367: 128298, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36368484

RESUMO

The bioconversion of food waste to renewable products has an important role in alleviating the environmental burden of food wastage. This study evaluates the effect of solids retention time (1.5, 4, and 7 days) and lipid content (up to 30 % DS) on the solid's destruction efficiency and VFA yield from food waste fermentation. Although SRT below 4 days and lipid content beyond 20 % reduced the solids destruction efficiency (SRT -12 %, lipids -13 %), the VFA yield improved (SRT 0.36 to 0.48 g CODVFA/TCODFED; lipids 0.17 to 0.39 g CODVFA/TCODFED). This appeared to be a mechanism of improved acidification which doubled to 0.77 gCODVFA/g SCOD at 1.5-day SRT. The introduction of easily degradable organics in waste oils and methanogen inhibition by LCFAs were likely causes of process instability when lipids >20 %. Further research is needed considering the COD fractionation of the feed to maximize recoverable products on a commercial scale.


Assuntos
Alimentos , Eliminação de Resíduos , Esgotos , Reatores Biológicos , Ácidos Graxos Voláteis , Anaerobiose
4.
Sci Total Environ ; 771: 144847, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33548701

RESUMO

Conventional diffused aeration systems (such as fine-bubble diffusers) exhibit a poor oxygen transfer in wastewater treatment plants (WWTPs), particularly when operating at sludge concentrations higher than 15 g L-1. The supersaturated dissolved oxygen (SDOX) system has been proposed as an alternative for supplying dissolved oxygen (DO) at high mixed liquor suspended solids (MLSS) concentrations. The advantages introduced by such technology include the possibility of operating WWTPs at much higher than usual MLSS concentrations, increasing the treatment capacity of WWTPs. Recent studies have demonstrated that the SDOX system has higher oxygen transfer rates (OTRs) and oxygen transfer efficiencies (OTEs) relative to fine-bubble diffusers. However, it is unknown if the high-pressure conditions introduced by SDOX may possibly impact the biological performance of WWTPs. In this study, the effects of SDOX technology on the biological performance of a membrane bioreactor (MBR) were evaluated. The MBR was operated at an MLSS concentration of approximately 15 g L-1 in four phases as follows: (P1) with bubble diffusers, (P2) with an SDOX unit, (P3) with the bubble diffusers, and (P4) with the SDOX unit. The performance of the MBR was assessed by monitoring the sludge concentration, as well as changes in the particle size distribution (PSD), sludge activity, organic matter removal and nitrification performance, and changes in the microbial community within the MBR. The operational conditions exerted by the SDOX technology did not affect the concentration of active biomass during the study period. The biological performance of the MBR was not affected by the introduction of the SDOX technology. Finally, the microbial community was relatively stable although some variations at the family and genus level were evident during each of the study phases. Therefore, the SDOX system can be proposed as an alternative technology for DO supply in WWTPs increasing the overall treatment capacity.


Assuntos
Oxigênio , Eliminação de Resíduos Líquidos , Reatores Biológicos , Membranas Artificiais , Dinâmica Populacional , Esgotos
5.
Chemosphere ; 272: 129899, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35534969

RESUMO

The use of near-infrared (NIR) spectroscopy in wastewater treatment has continuously expanded. As an alternative to conventional analytical methods for monitoring constituents in wastewater treatment processes, the use of NIR spectroscopy is considered to be cost-effective and less time-consuming. NIR spectroscopy does not distort the measured sample in any way as no prior treatment is required, making it a waste-free technique. On the negative side, one has to be very well versed with chemometric techniques to interpret the results. In this study, filtered and centrifuged wastewater and sludge samples from a lab-scale membrane bioreactor (MBR) were analysed. Two analytical methods (conventional and NIR spectroscopy) were used to determine and compare major wastewater constituents. Particular attention was paid to soluble microbial products (SMPs) and extracellular polymeric substances (EPSs) known to promote membrane fouling. The parameters measured by NIR spectroscopy were analysed and processed with partial least squares regression (PLSR) and artificial neural networks (ANN) models to assess whether the evaluated wastewater constituents can be monitored by NIR spectroscopy. Very good results were obtained with PLSR models, except for the determination of SMP, making the model qualitative rather than quantitative for their monitoring. ANN showed better performance in terms of correlation of NIR spectra with all measured parameters, resulting in correlation coefficients higher than 0.97 for training, testing, and validation in most cases. Based on the results of this research, the combination of NIR spectra and chemometric modelling offers advantages over conventional analytical methods.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Águas Residuárias , Reatores Biológicos , Membranas Artificiais , Esgotos/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Águas Residuárias/química
6.
Sci Total Environ ; 704: 135456, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31837866

RESUMO

The high frequency and intensity of urban floods caused by climate change, urbanisation and infrastructure failures increase public health risks when the flood water contaminated from combined sewer overflows (CSOs) or other sources of faecal contamination remains on urban surfaces. This study contributes to a better understanding of the effects of urban and recreational surfaces on the occurrence of waterborne pathogens. The inactivation of selected indicator organisms was studied under controlled exposure to artificial sunlight for 6 h followed by 18 h in dark conditions. Concrete, asphalt, pavement blocks and glass as control were inoculated with artificial floodwater containing, as indicator organisms, Escherichia coli bacteria, which are common faecal indicator bacteria (FIB) for water quality assessment, Bacillus subtilis spores chosen as surrogates for Cryptosporidium parvum oocysts and Giardia cysts, and bacteriophages MS2 as indicators for viral contamination. On practically all the surfaces in this study, E. coli had the highest inactivation under light conditions followed by MS2 and B. subtilis, except asphalt where MS2 was inactivated faster. The highest inactivation under light conditions was seen with E. coli on a concrete surface (pH 9.6) with an inactivation rate of 1.85 h-1. However, the pH of the surfaces (varying between 7.0 and 9.6) did not have any influence on inactivation rates under dark conditions. MS2 bacteriophage had the highest inactivation under light conditions on asphalt with a rate of 1.29 h-1. No die-off of B. subtilis spores was observed on any of the surfaces during the experiment, neither in light nor in dark conditions. This study underpins the need to use different indicator organisms to test their inactivation after flooding. It also suggests that given the sunlight conditions, concentration of indicator organisms and type of surface, the fate of waterborne pathogens after a flood could be estimated.


Assuntos
Monitoramento Ambiental/métodos , Inundações , Microbiologia da Água , Bactérias , Cidades , Criptosporidiose , Cryptosporidium , Cryptosporidium parvum , Levivirus , Oocistos
7.
J Environ Manage ; 250: 109516, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31513998

RESUMO

A better understanding of the effects of different urban and recreational surfaces on the die-off of water-borne pathogens that can cause infections after urban floods if released from surcharged combined sewers and other sources of fecal contamination is needed. The die-off of fecal indicator Escherichia coli was studied under controlled exposure to simulated sunlight on a range of different surfaces found in urban environments: gravel, sand, asphalt, pavement blocks, concrete, playground rubber tiles and grass, using glass as control. The surfaces were inoculated with artificial flooding water containing 105 colony forming units (CFU) of E. coli per mL and sampled periodically using the sterile cotton swab technique, after lowering the water level. The results show that dark inactivation was not statistically significant for any surface, suggesting that chemical composition and pH (varying between 6.5 ±â€¯0.8 and 9.2 ±â€¯0.4) did not affect the die-off rates. The highest light-induced die-off rates for E. coli after the floodwater recession, observed on rubber (>3.46 h-1) and asphalt (2.7 h-1), were attributed to temperature stress and loss of surface moisture.


Assuntos
Escherichia coli , Inundações , Fezes , Água Doce , Microbiologia da Água
8.
Front Microbiol ; 10: 125, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30833933

RESUMO

Candidatus Accumulibacter phosphatis is in general presented as the dominant organism responsible for the biological removal of phosphorus in activated sludge wastewater treatment plants. Lab-scale enhanced biological phosphorus removal (EBPR) studies, usually use acetate as carbon source. However, the complexity of the carbon sources present in wastewater could allow other potential poly-phosphate accumulating organism (PAOs), such as putative fermentative PAOs (e.g., Tetrasphaera), to proliferate in coexistence or competition with Ca. Accumulibacter. This research assessed the effects of lactate on microbial selection and process performance of an EBPR lab-scale study. The addition of lactate resulted in the coexistence of Ca. Accumulibacter and Tetrasphaera in a single EBPR reactor. An increase in anaerobic glycogen consumption from 1.17 to 2.96 C-mol/L and anaerobic PHV formation from 0.44 to 0.87 PHV/PHA C-mol/C-mol corresponded to the increase in the influent lactate concentration. The dominant metabolism shifted from a polyphosphate-accumulating metabolism (PAM) to a glycogen accumulating metabolism (GAM) without EBPR activity. However, despite the GAM, traditional glycogen accumulating organisms (GAOs; Candidatus Competibacter phosphatis and Defluvicoccus) were not detected. Instead, the 16s RNA amplicon analysis showed that the genera Tetrasphaera was the dominant organism, while a quantification based on FISH-biovolume indicated that Ca. Accumulibacter remained the dominant organism, indicating certain discrepancies between these microbial analytical methods. Despite the discrepancies between these microbial analytical methods, neither Ca. Accumulibacter nor Tetrasphaera performed biological phosphorus removal by utilizing lactate as carbon source.

9.
Environ Sci Pollut Res Int ; 26(33): 34285-34300, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30737715

RESUMO

The operation of membrane bioreactors (MBRs) at higher than usual mixed liquor suspended solids (MLSS) concentrations may enhance the loading rate treatment capacity while minimizing even further the system's footprint. This requires operating the MBR at the highest possible MLSS concentration and biomass activity (e.g., at high loading rates and low solid retention times (SRTs)). Both a negative effect of the MLSS concentrations and a positive effect of the SRT on the oxygen transfer have been reported when using conventional fine bubble diffusers. However, most of the evaluations have been carried out either at extremely high SRTs or at low MLSS concentrations eventually underestimating the effects of the MLSS concentration on the oxygen transfer. This research evaluated the current limitations imposed by fine bubble diffusers in the context of the high-loaded MBR (HL-MBR) (i.e., high MLSS and short SRT-the latter emulated by concentrating municipal sludge from a wastewater treatment plant (WWTP) operated at a short SRT of approximately 5 days). The high MLSS concentrations and the short SRT of the original municipal sludge induced a large fraction of mixed liquor volatile suspended solids (MLVSS) in the sludge, promoting a large amount of sludge flocs that eventually accumulated on the surface of the bubbles and reduced the free water content of the suspension. Moreover, the short SRTs at which the original municipal sludge was obtained eventually appear to have promoted the accumulation of surfactants in the sludge mixture. This combination exhibited a detrimental effect on the oxygen transfer. Fine bubble diffusers limit the maximum MLSS concentration for a HL-MBR at 30 g L-1; beyond that point is either not technically or not economically feasible to operate; an optimum MLSS concentration of 20 g L-1 is suggested to maximize the treatment capacity while minimizing the system's footprint.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos , Biomassa , Difusão , Membranas Artificiais , Oxigênio , Esgotos , Águas Residuárias
10.
Water Sci Technol ; 78(10): 2119-2130, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30629540

RESUMO

This paper summarizes recent developments in biological phosphorus removal modelling, with special attention to side-stream enhanced biological phosphorus removal (S2EBPR) systems on which previous models proved to be ineffective without case-by-case parameter adjustments. Through the research and experience of experts and practitioners, a new bio-kinetic model was developed including an additional group of biomass (glycogen accumulating organisms - GAOs) and new processes (such as aerobic and anoxic maintenance for PAO and GAO; enhanced denitrification processes; fermentation by PAOs which - along with PAO selection - is driven by oxidation-reduction potential (ORP)). This model successfully described various conditions in laboratory measurements and full plant data. The calibration data set is provided by Clean Water Services from Rock Creek Facility (Hillsboro, OR) including two parallel trains: conventional A2O and Westbank configurations, allowing the model to be verified on conventional and side-stream EBPR systems as well.


Assuntos
Modelos Químicos , Fósforo/química , Poluentes Químicos da Água/análise , Biomassa , Reatores Biológicos , Desnitrificação , Glicogênio , Fósforo/análise , Polifosfatos
11.
Appl Microbiol Biotechnol ; 101(15): 6229-6240, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28547567

RESUMO

The concentration of sulphate present in wastewater can vary from 10 to 500 mg SO42-/L. During anaerobic conditions, sulphate is reduced to sulphide by sulphate-reducing bacteria (SRB). Sulphide generation is undesired in wastewater treatment plants (WWTPs). Previous research indicated that SRB are inhibited by the presence of electron acceptors (such as O2, NO3 and NO2). However, the contact times and concentrations used in those studies are by far higher than occur in WWTPs. Since sulphide can influence the biological nitrogen and phosphorus removal processes, this research aimed to understand how the different electron acceptors commonly present in biological nutrient removal (BNR) systems can affect the proliferation of SRB. For this purpose, a culture of SRB was enriched in a sequencing batch reactor (approx. 88% of the total bacteria population). Once enriched, the SRB were exposed for 2 h to typical concentrations of electron acceptors like those observed in BNR systems. Their activity was assessed using three different types of electron donors (acetate, propionate and lactate). Oxygen was the most inhibiting electron acceptor regardless the carbon source used. After exposure to oxygen and when feeding acetate, an inactivation time in the sulphate reduction activity was observed for 1.75 h. Once the sulphate reduction activity resumed, only 60% of the original activity was recovered. It is suggested that the proliferation of SRB is most likely to occur in BNR plants with an anaerobic fraction higher than 15% and operating at sludge retention times higher than 20 days (at a temperature of 20 °C). These results can be used to implement strategies to control the growth of sulphate reducers that might compete for organic carbon with phosphate-accumulating organisms.


Assuntos
Bactérias/metabolismo , Elétrons , Esgotos/microbiologia , Sulfatos/metabolismo , Acetatos/metabolismo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Reatores Biológicos , Cinética , Lactatos/metabolismo , Oxirredução , Oxigênio/metabolismo , Propionatos/metabolismo , Sulfatos/análise , Sulfetos/metabolismo , Temperatura , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química
12.
Water Sci Technol ; 75(3-4): 561-570, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28192350

RESUMO

The feasibility of sludge reduction via the XE biodegradation process was explored both experimentally and through modeling, where the main focus was on determining the value of the bE parameter (first order degradation of XE) from a continuous process. Two activated sludge (AS) systems (30 L) were operated in parallel with synthetic wastewater during 16 months: a conventional activated sludge (CAS) system and a modified low-sludge production activated sludge (LSP-AS) process equipped with a side-stream digester unit (DU). First, the long term data of the CAS reactor (1 year) were used to calibrate the ASM model and to estimate the heterotrophic decay constant of the cultivated sludge (bH = 0.29 d-1, death-regeneration basis). Second, pre-simulations were performed to design the LSP-AS system and to estimate the DU volume required (40 L), to avoid XE accumulation in the process. Third, the LSP-AS process was built, put in operation and monitored for more than 9 months. This allowed assessment of the actual behavior of the quasi-complete solids retention system. Once calibrated, the modified AS model estimated the value of the bE parameter to be in the range of 0.003-0.006 d-1, satisfactorily describing the overall sludge yield reduction of up to 49% observed in the experiments.


Assuntos
Reatores Biológicos/microbiologia , Modelos Teóricos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Biodegradação Ambiental , Processos Heterotróficos , Águas Residuárias/química
13.
Water Res ; 105: 97-109, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27603967

RESUMO

Phosphate accumulating organisms (PAO) are assumed to use nitrate as external electron acceptor, allowing an efficient integration of simultaneous nitrogen and phosphate removal with minimal organic carbon (COD) requirements. However, contradicting findings appear in literature regarding the denitrification capacities of PAO due to the lack of clade specific highly enriched PAO cultures. Whereas some studies suggest that only PAO clade I may be capable of using nitrate as external electron acceptor for anoxic P-uptake, other studies indicate that PAO clade II may be responsible for anoxic P-removal. In the present study, a highly enriched PAO clade IC culture (>99% according to FISH) was cultivated in an SBR operated under Anaerobic/Oxic conditions and subsequently exposed to Anaerobic/Anoxic/Oxic conditions using nitrate as electron acceptor. Before and after acclimatization to the presence of nitrate, the aerobic and anoxic (nitrate and nitrite) activities of the PAO I culture were assessed through the execution of batch tests using either acetate or propionate as electron donor. In the presence of nitrate, significant P-uptake by PAO I was not observed before or after acclimatization. Using nitrite as electron acceptor, limited nitrite removal rates were observed before acclimatization with lower rates in the acetate fed reactor without P-uptake and slightly higher in the propionate fed reactor with a marginal anoxic P-uptake. Only after acclimatization to nitrate, simultaneous P and nitrite removal was observed. This study suggests that PAO clade IC is not capable of using nitrate as external electron acceptor for anoxic P-removal. The elucidation of the metabolic capacities for individual PAO clades helps in better understanding and optimization of the relation between microbial ecology and process performance in enhanced biological phosphate removal processes.


Assuntos
Desnitrificação , Nitritos , Reatores Biológicos , Nitratos , Fósforo/metabolismo , Esgotos
14.
Front Microbiol ; 7: 2121, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28111570

RESUMO

The objective of this study was to investigate the ability of a culture highly enriched with the polyphosphate-accumulating organism, "Candidatus Accumulibacter phosphatis" clade IIC, to adjust their metabolism to different phosphate availabilities. For this purpose the biomass was cultivated in a sequencing batch reactor with acetate and exposed to different phosphate/carbon influent ratios during six experimental phases. Activity tests were conducted to determine the anaerobic kinetic and stoichiometric parameters as well as the composition of the microbial community. Increasing influent phosphate concentrations led to increased poly-phosphate content and decreased glycogen content of the biomass. In response to higher biomass poly-phosphate content, the biomass showed higher specific phosphate release rates. Together with the phosphate release rates, acetate uptake rates also increased up to an optimal poly-phosphate/glycogen ratio of 0.3 P-mol/C-mol. At higher poly-phosphate/glycogen ratios (obtained at influent P/C ratios above 0.051 P-mol/C-mol), the acetate uptake rates started to decrease. The stoichiometry of the anaerobic conversions clearly demonstrated a metabolic shift from a glycogen dominated to a poly-phosphate dominated metabolism as the biomass poly-phosphate content increased. FISH and DGGE analyses confirmed that no significant changes occurred in the microbial community, suggesting that the changes in the biomass activity were due to different metabolic behavior, allowing the organisms to proliferate under conditions with fluctuating phosphate levels.

15.
Water Sci Technol ; 72(3): 443-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26204077

RESUMO

Wastewater treatment technologies requiring large areas may be less feasible in urbanizing regions of developing countries. Therefore, a new technology, named photo-activated sludge (PAS), was investigated to combine the advantages of regular activated sludge systems with those of algae ponds for the removal of ammonium. The PAS consisted of a mixed photo-bioreactor, continuously fed with BG-11 medium, adjusted to 66 mgN-NH4⁺/l. The reactor volume was 2 l, hydraulic retention time was 24 hours, with a depth of 8 cm, and continuous illumination at the water surface was 66 µmol PAR/m²/s (photosynthetically active radiation). Reactor effluent passed through a settler and settled biomass was returned to the reactor. A well settling biomass developed, that contained both algae and nitrifiers. Effluent contained 10 mgN-NH4⁺/L and 51 mgN-NOx⁻/L. Using a simplified model, the specific algae growth rate was estimated at about 0.62 day⁻¹, which was within the expected range. For nitrifiers (ammonia oxidizers), the specific growth rate was 0.11 day⁻¹, which was lower than reported for regular activated sludge. The in-situ photo-oxygenation process by algae contributed 82% of the oxygen input, whereas oxygen diffusion through the mixed surface provided the remaining 18%. The foreseen energy savings that a PAS system could achieve warrant further investigations with real wastewater.


Assuntos
Reatores Biológicos , Nitrificação , Reciclagem , Esgotos/microbiologia , Biomassa , Luz , Lagoas , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
16.
Water Res ; 43(11): 2852-64, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19380157

RESUMO

Glycogen accumulating organisms (GAO) compete for substrate with polyphosphate-accumulating organisms (PAO), which are the microorganisms responsible for the enhanced biological phosphorus removal (EBPR) in activated sludge wastewater treatment systems. This can lead to the deterioration of the EBPR process. In this paper, the long-term temperature effects on the anaerobic and aerobic stoichiometry and conversion rates on adapted enriched cultures of Competibacter (a known GAO) were evaluated from 10 to 40 degrees C. The anaerobic stoichiometry of Competibacter was constant from 15 to 35 degrees C, whereas the aerobic stoichiometry was insensitive to temperature changes from 10 to 30 degrees C. At 10 degrees C, likely due to the inhibition of the anaerobic conversions of Competibacter, a switch in the dominant bacterial population to an enriched Accumulibacter culture (a known PAO) was observed. At higher temperatures (35 and 40 degrees C), the aerobic processes limited the growth of Competibacter. Due to the inhibition or different steady-state (equilibrium) conditions reached at long-term by the metabolic conversions, the short- and long-term temperature dependencies of the anaerobic acetate uptake rate of Competibacter differed considerably between each other. Temperature coefficients for the various metabolic processes are derived, which can be used in activated sludge modeling. Like for PAO cultures: (i) the GAO metabolism appears oriented at restoring storage pools rather than fast microbial growth, and (ii) the aerobic growth rate of GAO seems to be a result of the difference between PHA consumption and PHA utilization for glycogen synthesis and maintenance. It appears that the proliferation of Competibacter in EBPR systems could be suppressed by adjusting the aerobic solids retention time while, aiming at obtaining highly enriched PAO cultures, EBPR lab-scale reactors could be operated at low temperature (e.g. 10 degrees C).


Assuntos
Glicogênio/metabolismo , Eliminação de Resíduos Líquidos/métodos , Aerobiose , Anaerobiose , Reatores Biológicos , Fósforo/metabolismo , Temperatura , Fatores de Tempo
17.
Water Res ; 43(2): 450-62, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19022471

RESUMO

The influence of different carbon sources (acetate to propionate ratios), temperature and pH levels on the competition between polyphosphate- and glycogen-accumulating organisms (PAO and GAO, respectively) was evaluated using a metabolic model that incorporated the carbon source, temperature and pH dependences of these microorganisms. The model satisfactorily described the bacterial activity of PAO (Accumulibacter) and GAO (Competibacter and Alphaproteobacteria-GAO) laboratory-enriched cultures cultivated on propionate (HPr) and acetate (HAc) at standard conditions (20 degrees C and pH 7.0). Using the calibrated model, the effects of different influent HAc to HPr ratios (100-0, 75-25, 50-50 and 0-100%), temperatures (10, 20 and 30 degrees C) and pH levels (6.0, 7.0 and 7.5) on the competition among Accumulibacter, Competibacter and Alphaproteobacteria-GAO were evaluated. The main aim was to assess which conditions were favorable for the existence of PAO and, therefore, beneficial for the biological phosphorus removal process in sewage treatment plants. At low temperature (10 degrees C), PAO were the dominant microorganisms regardless of the used influent carbon source or pH. At moderate temperature (20 degrees C), PAO dominated the competition when HAc and HPr were simultaneously supplied (75-25 and 50-50% HAc to HPr ratios). However, the use of either HAc or HPr as sole carbon source at 20 degrees C was not favorable for PAO unless a high pH was used (7.5). Meanwhile, at higher temperature (30 degrees C), GAO tended to be the dominant microorganisms. Nevertheless, the combined presence of acetate and propionate in the influent (75-25 and 50-50% HAc to HPr ratios) as well as a high pH (7.5) appear to be potential factors to favor the metabolism of PAO over GAO at higher sewage temperature (30 degrees C).


Assuntos
Bactérias/metabolismo , Glicogênio/metabolismo , Polifosfatos/metabolismo , Acetatos/metabolismo , Reatores Biológicos , Carbono , Concentração de Íons de Hidrogênio , Modelos Biológicos , Propionatos/metabolismo , Temperatura , Eliminação de Resíduos Líquidos/métodos
18.
Biotechnol Bioeng ; 101(2): 295-306, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18623226

RESUMO

Short-term temperature effects on the aerobic metabolism of glycogen-accumulating organisms (GAO) were investigated within a temperature range from 10 to 40 degrees C. Candidatus Competibacter Phosphatis, known GAO, were the dominant microorganisms in the enriched culture comprising 93 +/- 1% of total bacterial population as indicated by fluorescence in situ hybridization (FISH) analysis. Between 10 and 30 degrees C, the aerobic stoichiometry of GAO was insensitive to temperature changes. Around 30 degrees C, the optimal temperature for most of the aerobic kinetic rates was found. At temperatures higher than 30 degrees C, a decrease on the aerobic stoichiometric yields combined with an increase on the aerobic maintenance requirements were observed. An optimal overall temperature for both anaerobic and aerobic metabolisms of GAO appears to be found around 30 degrees C. Furthermore, within a temperature range (10-30 degrees C) that covers the operating temperature range of most of domestic wastewater treatment systems, GAOs aerobic kinetic rates exhibited a medium degree of dependency on temperature (theta = 1.046-1.090) comparable to that of phosphorus accumulating organisms (PAO). We conclude that GAO do not have metabolic advantages over PAO concerning the effects of temperature on their aerobic metabolism, and competitive advantages are due to anaerobic processes.


Assuntos
Bactérias/metabolismo , Glicogênio/metabolismo , Consumo de Oxigênio , Temperatura , Trifosfato de Adenosina/metabolismo , Aerobiose , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Meios de Cultura , Cinética , Fósforo/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Esgotos/microbiologia , Eliminação de Resíduos Líquidos
20.
Water Res ; 42(10-11): 2349-60, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18272198

RESUMO

The influence of operating and environmental conditions on the microbial populations of the enhanced biological phosphorus removal (EBPR) process at seven full-scale municipal activated sludge wastewater treatment plants (WWTPs) in The Netherlands was studied. Data from the selected WWTPs concerning process configuration, operating and environmental conditions were compiled. The EBPR activity from each plant was determined by execution of anaerobic-anoxic-aerobic batch tests using fresh activated sludge. Fractions of Accumulibacter as potential phosphorus accumulating organisms (PAO), and Competibacter, Defluviicoccus-related microorganisms and Sphingomonas as potential glycogen accumulating organisms (GAO) were quantified using fluorescence in situ hybridization (FISH). The relationships among plant process configurations, operating parameters, environmental conditions, EBPR activity and microbial populations fractions were evaluated using a statistical approach. A well-defined and operated denitrification stage and a higher mixed liquor pH value in the anaerobic stage were positively correlated with the occurrence of Accumulibacter. A well-defined denitrification stage also stimulated the development of denitrifying PAO (DPAO). A positive correlation was observed between Competibacter fractions and organic matter concentrations in the influent. Nevertheless, Competibacter did not cause a major effect on the EBPR performance. The observed Competibacter fractions were not in the range that would have led to EBPR deterioration. Likely, the low average sewerage temperature (12+/-2 degrees C) limited their proliferation. Defluviicoccus-related microorganisms were seen only in negligible fractions in a few plants (<0.1% as EUB), whereas Sphingomonas were not observed.


Assuntos
Bactérias/metabolismo , Fósforo/isolamento & purificação , Purificação da Água , Aerobiose , Anaerobiose , Biodegradação Ambiental , Glicogênio/metabolismo , Países Baixos , Fósforo/metabolismo , Esgotos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...