Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Neurophysiol ; 163: 39-46, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38703698

RESUMO

OBJECTIVE: We set out to evaluate whether response to treatment for epileptic spasms is associated with specific candidate computational EEG biomarkers, independent of clinical attributes. METHODS: We identified 50 children with epileptic spasms, with pre- and post-treatment overnight video-EEG. After EEG samples were preprocessed in an automated fashion to remove artifacts, we calculated amplitude, power spectrum, functional connectivity, entropy, and long-range temporal correlations (LRTCs). To evaluate the extent to which each feature is independently associated with response and relapse, we conducted logistic and proportional hazards regression, respectively. RESULTS: After statistical adjustment for the duration of epileptic spasms prior to treatment, we observed an association between response and stronger baseline and post-treatment LRTCs (P = 0.042 and P = 0.004, respectively), and higher post-treatment entropy (P = 0.003). On an exploratory basis, freedom from relapse was associated with stronger post-treatment LRTCs (P = 0.006) and higher post-treatment entropy (P = 0.044). CONCLUSION: This study suggests that multiple EEG features-especially LRTCs and entropy-may predict response and relapse. SIGNIFICANCE: This study represents a step toward a more precise approach to measure and predict response to treatment for epileptic spasms.

2.
Epilepsia Open ; 9(1): 176-186, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37920928

RESUMO

OBJECTIVE: Identification of EEG waveforms is critical for diagnosing Lennox-Gastaut Syndrome (LGS) but is complicated by the progressive nature of the disease. Here, we assess the interrater reliability (IRR) among pediatric epileptologists for classifying EEG waveforms associated with LGS. METHODS: A novel automated algorithm was used to objectively identify epochs of EEG with transient high power, which were termed events of interest (EOIs). The algorithm was applied to EEG from 20 LGS subjects and 20 healthy controls during NREM sleep, and 1350 EOIs were identified. Three raters independently reviewed the EOIs within isolated 15-second EEG segments in a randomized, blinded fashion. For each EOI, the raters assigned a waveform label (spike and slow wave, generalized paroxysmal fast activity, seizure, spindle, vertex, muscle, artifact, nothing, or other) and indicated the perceived subject type (LGS or control). RESULTS: Labeling of subject type had 85% accuracy across all EOIs and an IRR of κ =0.790, suggesting that brief segments of EEG containing high-power waveforms can be reliably classified as pathological or normal. Waveform labels were less consistent, with κ =0.558, and the results were highly variable for different categories of waveforms. Label mismatches typically occurred when one reviewer selected "nothing," suggesting that reviewers had different thresholds for applying named labels. SIGNIFICANCE: Classification of EEG waveforms associated with LGS has weak IRR, due in part to varying thresholds applied during visual review. Computational methods to objectively define EEG biomarkers of LGS may improve IRR and aid clinical decision-making.


Assuntos
Síndrome de Lennox-Gastaut , Humanos , Criança , Síndrome de Lennox-Gastaut/diagnóstico , Reprodutibilidade dos Testes , Eletroencefalografia/métodos , Convulsões , Cabeça
4.
J Neural Eng ; 20(2)2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36720162

RESUMO

Objective.Intracranial electroencephalogram (iEEG) plays a critical role in the treatment of neurological diseases, such as epilepsy and Parkinson's disease, as well as the development of neural prostheses and brain computer interfaces. While electrode geometries vary widely across these applications, the impact of electrode size on iEEG features and morphology is not well understood. Some insight has been gained from computer simulations, as well as experiments in which signals are recorded using electrodes of different sizes concurrently in different brain regions. Here, we introduce a novel method to record from electrodes of different sizes in the exact same location by changing the size of iEEG electrodes after implantation in the brain.Approach.We first present a theoretical model and anin vitrovalidation of the method. We then report the results of anin vivoimplementation in three human subjects with refractory epilepsy. We recorded iEEG data from three different electrode sizes and compared the amplitudes, power spectra, inter-channel correlations, and signal-to-noise ratio (SNR) of interictal epileptiform discharges, i.e. epileptic spikes.Main Results.We found that iEEG amplitude and power decreased as electrode size increased, while inter-channel correlation did not change significantly with electrode size. The SNR of epileptic spikes was generally highest in the smallest electrodes, but 39% of spikes had maximal SNR in larger electrodes. This likely depends on the precise location and spatial spread of each spike.Significance.Overall, this new method enables multi-scale measurements of electrical activity in the human brain that can facilitate our understanding of neurophysiology, treatment of neurological disease, and development of novel technologies.


Assuntos
Eletrocorticografia , Epilepsia , Humanos , Eletrocorticografia/métodos , Eletroencefalografia/métodos , Encéfalo , Eletrodos
5.
Front Neurol ; 13: 960454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968272

RESUMO

Early diagnosis and treatment are critical for young children with infantile spasms (IS), as this maximizes the possibility of the best possible child-specific outcome. However, there are major barriers to achieving this, including high rates of misdiagnosis or failure to recognize the seizures, medication failure, and relapse. There are currently no validated tools to aid clinicians in assessing objective diagnostic criteria, predicting or measuring medication response, or predicting the likelihood of relapse. However, the pivotal role of EEG in the clinical management of IS has prompted many recent studies of potential EEG biomarkers of the disease. These include both visual EEG biomarkers based on human visual interpretation of the EEG and computational EEG biomarkers in which computers calculate quantitative features of the EEG. Here, we review the literature on both types of biomarkers, organized based on the application (diagnosis, treatment response, prediction, etc.). Visual biomarkers include the assessment of hypsarrhythmia, epileptiform discharges, fast oscillations, and the Burden of AmplitudeS and Epileptiform Discharges (BASED) score. Computational markers include EEG amplitude and power spectrum, entropy, functional connectivity, high frequency oscillations (HFOs), long-range temporal correlations, and phase-amplitude coupling. We also introduce each of the computational measures and provide representative examples. Finally, we highlight remaining gaps in the literature, describe practical guidelines for future biomarker discovery and validation studies, and discuss remaining roadblocks to clinical implementation, with the goal of facilitating future work in this critical area.

6.
J Neural Eng ; 19(1)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35120337

RESUMO

Objective. High frequency oscillations (HFOs) recorded by intracranial electrodes have generated excitement for their potential to help localize epileptic tissue for surgical resection. However, the number of HFOs per minute (i.e. the HFO 'rate') is not stable over the duration of intracranial recordings; for example, the rate of HFOs increases during periods of slow-wave sleep. Moreover, HFOs that are predictive of epileptic tissue may occur in oscillatory patterns due to phase coupling with lower frequencies. Therefore, we sought to further characterize between-seizure (i.e. 'interictal') HFO dynamics both within and outside the seizure onset zone (SOZ).Approach. Using long-term intracranial EEG (mean duration 10.3 h) from 16 patients, we automatically detected HFOs using a new algorithm. We then fit a hierarchical negative binomial model to the HFO counts. To account for differences in HFO dynamics and rates between sleep and wakefulness, we also fit a mixture model to the same data that included the ability to switch between two discrete brain states that were automatically determined during the fitting process. The ability to predict the SOZ by model parameters describing HFO dynamics (i.e. clumping coefficients and coefficients of variation) was assessed using receiver operating characteristic curves.Main results. Parameters that described HFO dynamics were predictive of SOZ. In fact, these parameters were found to be more consistently predictive than HFO rate. Using concurrent scalp EEG in two patients, we show that the model-found brain states corresponded to (1) non-REM sleep and (2) awake and rapid eye movement sleep. However the brain state most likely corresponding to slow-wave sleep in the second model improved SOZ prediction compared to the first model for only some patients.Significance. This work suggests that delineation of SOZ with interictal data can be improved by the inclusion of time-varying HFO dynamics.


Assuntos
Epilepsia , Convulsões , Biomarcadores , Eletrocorticografia , Eletroencefalografia/métodos , Epilepsia/cirurgia , Humanos , Convulsões/diagnóstico
7.
Front Netw Physiol ; 2: 893826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36926103

RESUMO

During normal childhood development, functional brain networks evolve over time in parallel with changes in neuronal oscillations. Previous studies have demonstrated differences in network topology with age, particularly in neonates and in cohorts spanning from birth to early adulthood. Here, we evaluate the developmental changes in EEG functional connectivity with a specific focus on the first 2 years of life. Functional connectivity networks (FCNs) were calculated from the EEGs of 240 healthy infants aged 0-2 years during wakefulness and sleep using a cross-correlation-based measure and the weighted phase lag index. Topological features were assessed via network strength, global clustering coefficient, characteristic path length, and small world measures. We found that cross-correlation FCNs maintained a consistent small-world structure, and the connection strengths increased after the first 3 months of infancy. The strongest connections in these networks were consistently located in the frontal and occipital regions across age groups. In the delta and theta bands, weighted phase lag index networks decreased in strength after the first 3 months in both wakefulness and sleep, and a similar result was found in the alpha and beta bands during wakefulness. However, in the alpha band during sleep, FCNs exhibited a significant increase in strength with age, particularly in the 21-24 months age group. During this period, a majority of the strongest connections in the networks were located in frontocentral regions, and a qualitatively similar distribution was seen in the beta band during sleep for subjects older than 3 months. Graph theory analysis suggested a small world structure for weighted phase lag index networks, but to a lesser degree than those calculated using cross-correlation. In general, graph theory metrics showed little change over time, with no significant differences between age groups for the clustering coefficient (wakefulness and sleep), characteristics path length (sleep), and small world measure (sleep). These results suggest that infant FCNs evolve during the first 2 years with more significant changes to network strength than features of the network structure. This study quantifies normal brain networks during infant development and can serve as a baseline for future investigations in health and neurological disease.

8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6528-6532, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892605

RESUMO

The infant brain is rapidly developing, and these changes are reflected in scalp electroencephalography (EEG) features, including power spectrum and sleep spindle characteristics. These biomarkers not only mirror infant development, but they are also altered by conditions such as epilepsy, autism, developmental delay, and trisomy 21. Prior studies of early development were generally limited by small cohort sizes, lack of a specific focus on infancy (0-2 years), and exclusive use of visual marking for sleep spindles. Therefore, we measured the EEG power spectrum and sleep spindles in 240 infants ranging from 0-24 months. To rigorously assess these metrics, we used both clinical visual assessment and computational techniques, including automated sleep spindle detection. We found that the peak frequency and power of the posterior dominant rhythm (PDR) increased with age, and a corresponding peak occurred in the EEG power spectra. Based on both clinical and computational measures, spindle duration decreased with age, and spindle synchrony increased with age. Our novel metric of spindle asymmetry suggested that peak spindle asymmetry occurs at 6-9 months of age.Clinical Relevance- Here we provide a robust characterization of the development of EEG brain rhythms during infancy. This can be used as a basis of comparison for studies of infant neurological disease, including epilepsy, autism, developmental delay, and trisomy 21.


Assuntos
Desenvolvimento Infantil , Couro Cabeludo , Biomarcadores , Criança , Eletroencefalografia , Humanos , Lactente , Fases do Sono
9.
Epilepsy Res ; 178: 106809, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34823159

RESUMO

OBJECTIVE: Delta-gamma phase-amplitude coupling in EEG is useful for localizing epileptic sources and to evaluate severity in children with infantile spasms. We (1) develop an automated EEG preprocessing pipeline to clean data using artifact subspace reconstruction (ASR) and independent component (IC) analysis (ICA) and (2) evaluate delta-gamma modulation index (MI) as a method to distinguish children with epileptic spasms (cases) from normal controls during sleep and awake. METHODS: Using 400 scalp EEG datasets (200 sleep, 200 awake) from 100 subjects, we calculated MI after applying high-pass and line-noise filters (Clean 0), and after ASR followed by either conservative (Clean 1) or stringent (Clean 2) artifactual IC rejection. Classification of cases and controls using MI was evaluated with Receiver Operating Characteristics (ROC) to obtain area under curve (AUC). RESULTS: The artifact rejection algorithm reduced raw signal variance by 29-45% and 38-60% for Clean 1 and Clean 2, respectively. MI derived from sleep data, with or without preprocessing, robustly classified the groups (all AUC > 0.98). In contrast, group classification using MI derived from awake data was successful only after Clean 2 (AUC = 0.85). CONCLUSIONS: We have developed an automated EEG preprocessing pipeline to perform artifact rejection and quantify delta-gamma modulation index.


Assuntos
Espasmos Infantis , Vigília , Algoritmos , Artefatos , Criança , Eletroencefalografia/métodos , Humanos , Couro Cabeludo , Processamento de Sinais Assistido por Computador , Espasmo
10.
Brain Sci ; 11(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34679410

RESUMO

People with schizophrenia often experience a profound lack of motivation for social affiliation-a facet of negative symptoms that detrimentally impairs functioning. However, the mechanisms underlying social affiliative deficits remain poorly understood, particularly under realistic social contexts. Here, we investigated subjective reports and electroencephalography (EEG) functional connectivity in schizophrenia during a live social interaction. Individuals with schizophrenia (n = 16) and healthy controls (n = 29) completed a face-to-face interaction with a confederate while having EEG recorded. Participants were randomly assigned to either a Closeness condition designed to elicit feelings of closeness through self-disclosure or a Small-Talk condition with minimal disclosure. Compared to controls, patients reported lower positive emotional experiences and feelings of closeness across conditions, but they showed comparably greater subjective affiliative responses for the Closeness (vs. Small-Talk) condition. Additionally, patients in the Closeness (vs. Small-Talk) condition displayed a global increase in connectivity in theta and alpha frequency bands that was not observed for controls. Importantly, greater theta and alpha connectivity was associated with greater subjective affiliative responding, greater negative symptoms, and lower disorganized symptoms in patients. Collectively, findings indicate that patients, because of pronounced negative symptoms, utilized a less efficient, top-down mediated strategy to process social affiliation.

11.
Epilepsy Res ; 176: 106704, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34218209

RESUMO

OBJECTIVE: Favorable neurodevelopmental outcomes in epileptic spasms (ES) are tied to early diagnosis and prompt treatment, but uncertainty in the identification of the disease can delay this process. Therefore, we investigated five categories of computational electroencephalographic (EEG) measures as markers of ES. METHODS: We measured 1) amplitude, 2) power spectra, 3) Shannon entropy and permutation entropy, 4) long-range temporal correlations, via detrended fluctuation analysis (DFA) and 5) functional connectivity using cross-correlation and phase lag index (PLI). EEG data were analyzed from ES patients (n = 40 patients) and healthy controls (n = 20 subjects), with multiple blinded measurements during wakefulness and sleep for each patient. RESULTS: In ES patients, EEG amplitude was significantly higher in all electrodes when compared to controls. Shannon and permutation entropy were lower in ES patients than control subjects. The DFA intercept values in ES patients were significantly higher than control subjects, while DFA exponent values were not significantly different between the groups. EEG functional connectivity networks in ES patients were significantly stronger than controls when based on both cross-correlation and PLI. Significance for all statistical tests was p < 0.05, adjusted for multiple comparisons using the Benjamini-Hochberg procedure as appropriate. Finally, using logistic regression, a multi-attribute classifier was derived that accurately distinguished cases from controls (area under curve of 0.96). CONCLUSIONS: Computational EEG features successfully distinguish ES patients from controls in a large, blinded study. SIGNIFICANCE: These objective EEG markers, in combination with other clinical factors, may speed the diagnosis and treatment of the disease, thereby improving long-term outcomes.


Assuntos
Espasmos Infantis , Eletroencefalografia/métodos , Humanos , Sono , Espasmo , Espasmos Infantis/tratamento farmacológico , Vigília
12.
Netw Neurosci ; 5(2): 614-630, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34189380

RESUMO

Functional connectivity networks are valuable tools for studying development, cognition, and disease in the infant brain. In adults, such networks are modulated by the state of consciousness and the circadian rhythm; however, it is unknown if infant brain networks exhibit similar variation, given the unique temporal properties of infant sleep and circadian patterning. To address this, we analyzed functional connectivity networks calculated from long-term EEG recordings (average duration 20.8 hr) from 19 healthy infants. Networks were subject specific, as intersubject correlations between weighted adjacency matrices were low. However, within individual subjects, both sleep and wake networks were stable over time, with stronger functional connectivity during sleep than wakefulness. Principal component analysis revealed the presence of two dominant networks; visual sleep scoring confirmed that these corresponded to sleep and wakefulness. Lastly, we found that network strength, degree, clustering coefficient, and path length significantly varied with time of day, when measured in either wakefulness or sleep at the group level. Together, these results suggest that modulation of healthy functional networks occurs over ∼24 hr and is robust and repeatable. Accounting for such temporal periodicities may improve the physiological interpretation and use of functional connectivity analysis to investigate brain function in health and disease.

13.
J Neural Eng ; 18(1)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33217752

RESUMO

Objective.Scalp high-frequency oscillations (HFOs) are a promising biomarker of epileptogenicity in infantile spasms (IS) and many other epilepsy syndromes, but prior studies have relied on visual analysis of short segments of data due to the prevalence of artifacts in EEG. Here we set out to robustly characterize the rate and spatial distribution of HFOs in large datasets from IS subjects using fully automated HFO detection techniques.Approach.We prospectively collected long-term scalp EEG data from 12 subjects with IS and 18 healthy controls. For patients with IS, recording began prior to diagnosis and continued through initiation of treatment with adrenocorticotropic hormone (ACTH). The median analyzable EEG duration was 18.2 h for controls and 84.5 h for IS subjects (∼1300 h total). Ripples (80-250 Hz) were detected in all EEG data using an automated algorithm.Main results.HFO rates were substantially higher in patients with IS compared to controls. In IS patients, HFO rates were higher during sleep compared to wakefulness (median 5.5 min-1and 2.9 min-1, respectively;p = 0.002); controls did not exhibit a difference in HFO rate between sleep and wakefulness (median 0.98 min-1and 0.82 min-1, respectively). Spatially, IS patients exhibited significantly higher rates of HFOs in the posterior parasaggital region and significantly lower HFO rates in frontal channels, and this difference was more pronounced during sleep. In IS subjects, ACTH therapy significantly decreased the rate of HFOs.Significance.Here we provide a detailed characterization of the spatial distribution and rates of HFOs associated with IS, which may have relevance for diagnosis and assessment of treatment response. We also demonstrate that our fully automated algorithm can be used to detect HFOs in long-term scalp EEG with sufficient accuracy to clearly discriminate healthy subjects from those with IS.


Assuntos
Ondas Encefálicas , Espasmos Infantis , Eletroencefalografia , Humanos , Couro Cabeludo , Sono , Espasmos Infantis/diagnóstico , Vigília
14.
Clin Neurophysiol ; 131(11): 2542-2550, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32927209

RESUMO

OBJECTIVE: Studies of high frequency oscillations (HFOs) in epilepsy have primarily tested the HFO rate as a biomarker of the seizure onset zone (SOZ), but the rate varies over time and is not robust for all individual subjects. As an alternative, we tested the performance of HFO amplitude as a potential SOZ biomarker using two automated detection algorithms. METHOD: HFOs were detected in intracranial electroencephalogram (iEEG) from 11 patients using a machine learning algorithm and a standard amplitude-based algorithm. For each detector, SOZ and non-SOZ channels were classified using the rate and amplitude of high frequency events, and performance was compared using receiver operating characteristic curves. RESULTS: The amplitude of detected events was significantly higher in SOZ. Across subjects, amplitude more accurately classified SOZ/non-SOZ than rate (higher values of area under the ROC curve and sensitivity, and lower false positive rates). Moreover, amplitude was more consistent across segments of data, indicated by lower coefficient of variation. CONCLUSION: As an SOZ biomarker, HFO amplitude offers advantages over HFO rate: it exhibits higher classification accuracy, more consistency over time, and robustness to parameter changes. SIGNIFICANCE: This biomarker has the potential to increase the generalizability of HFOs and facilitate clinical implementation as a tool for SOZ localization.


Assuntos
Ondas Encefálicas/fisiologia , Encéfalo/fisiopatologia , Epilepsia/fisiopatologia , Convulsões/fisiopatologia , Adulto , Algoritmos , Biomarcadores , Mapeamento Encefálico/métodos , Eletrocorticografia , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Epilepsia ; 61(8): 1553-1569, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32729943

RESUMO

High-frequency oscillations (HFOs) in intracranial electroencephalography (EEG) are a promising biomarker of the epileptogenic zone and tool for surgical planning. Many studies have shown that a high rate of HFOs (number per minute) is correlated with the seizure-onset zone, and complete removal of HFO-generating brain regions has been associated with seizure-free outcome after surgery. In order to use HFOs as a biomarker, these transient events must first be detected in electrophysiological data. Because visual detection of HFOs is time-consuming and subject to low interrater reliability, many automated algorithms have been developed, and they are being used increasingly for such studies. However, there is little guidance on how to select an algorithm, implement it in a clinical setting, and validate the performance. Therefore, we aim to review automated HFO detection algorithms, focusing on conceptual similarities and differences between them. We summarize the standard steps for data pre-processing, as well as post-processing strategies for rejection of false-positive detections. We also detail four methods for algorithm testing and validation, and we describe the specific goal achieved by each one. We briefly review direct comparisons of automated algorithms applied to the same data set, emphasizing the importance of optimizing detection parameters. Then, to assess trends in the use of automated algorithms and their potential for use in clinical studies, we review evidence for the relationship between automatically detected HFOs and surgical outcome. We conclude with practical recommendations and propose standards for the selection, implementation, and validation of automated HFO-detection algorithms.


Assuntos
Algoritmos , Encéfalo/fisiopatologia , Eletrocorticografia/tendências , Epilepsia/diagnóstico , Processamento de Sinais Assistido por Computador , Artefatos , Mapeamento Encefálico , Ondas Encefálicas , Eletroencefalografia/tendências , Epilepsia/fisiopatologia , Humanos , Reprodutibilidade dos Testes
16.
Epilepsia Open ; 5(2): 263-273, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32524052

RESUMO

OBJECTIVE: High-frequency oscillations (HFOs) are a promising biomarker for the epileptogenic zone. However, no physiological definition of an HFO has been established, so detection relies on the empirical definition of an HFO derived from visual observation. This can bias estimates of HFO features such as amplitude and duration, thereby hindering their utility as biomarkers. Therefore, we set out to develop an algorithm that detects high-frequency events in the intracranial EEG that are morphologically distinct from background without requiring assumptions about event amplitude or shape. METHOD: We propose the anomaly detection algorithm (ADA), which uses unsupervised machine learning to identify segments of data that are distinct from the background. We apply ADA and a standard HFO detector using a root mean square amplitude threshold to intracranial EEG from 11 patients undergoing evaluation for epilepsy surgery. The rate, amplitude, and duration of the detected events and the percent overlap between the two detectors are compared. RESULT: In the seizure onset zone (SOZ), ADA detected a subset of conventional HFOs. In non-SOZ channels, ADA detected at least twice as many events as the standard approach, including some conventional HFOs; however, ADA also identified many low and intermediate amplitude events missed by the standard amplitude-based method. The rate of ADA events was similar across all channels; however, the amplitude of ADA events was significantly higher in SOZ channels (P < .0045), and the amplitude measurement was more stable over time than the HFO rate, as indicated by a lower coefficient of variation (P < .0125). SIGNIFICANCE: ADA does not require human supervision, parameter optimization, or prior assumptions about event shape, amplitude, or duration. Our results suggest that the algorithm's estimate of event amplitude may differentiate SOZ and non-SOZ channels. Further studies will examine the utility of HFO amplitude as a biomarker for epilepsy surgical outcome.

17.
Int J Psychophysiol ; 155: 175-183, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32599002

RESUMO

The disconnection hypothesis of schizophrenia says that symptoms are explained by dysfunctional connections across a wide range of brain networks. Despite some support for this hypothesis, there have been mixed findings. One reason for these may be the multidimensional nature of schizophrenia symptoms. In order to clarify the relationship between symptoms and brain networks, the current study included individuals at risk for schizophrenia-spectrum disorders who either report extreme levels of positive schizotypy traits (perceptual aberrations and magical ideation, or "PerMag"; n = 23), or an extreme negative schizotypy trait (social anhedonia, or "SocAnh"; n = 19), as well as a control group (n = 18). Resting-state alpha electroencephalography was collected, and functional networks for each subject were measured using the phase-lag index to calculate the connectivity between channel pairs based on the symmetry of instantaneous phase differences over time. Furthermore, graph theory measures were introduced to identify network features exclusive to schizotypy groups. We found that the PerMag group exhibited a smaller difference in node strength and clustering coefficient in frontal/occipital and central/occipital regional comparisons compared to controls, suggesting a more widespread network. The SocAnh group exhibited a larger difference in degree in the central/occipital regional comparison relative to controls, suggesting a localized occipital focus in the connectivity network. Regional differences in functional connectivity suggest that different schizotypy dimensions are manifested at the network level by different forms of disconnections. Taken together, these findings lend further support to the disconnection hypothesis and suggest that altered connectivity networks may serve as a potential biomarker for schizophrenia risk.


Assuntos
Esquizofrenia , Transtorno da Personalidade Esquizotípica , Anedonia , Encéfalo , Humanos
18.
Clin Neurophysiol ; 131(5): 1087-1098, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32199397

RESUMO

OBJECTIVE: Functional connectivity networks (FCNs) based on interictal electroencephalography (EEG) can identify pathological brain networks associated with epilepsy. FCNs are altered by interictal epileptiform discharges (IEDs), but it is unknown whether this is due to the morphology of the IED or the underlying pathological activity. Therefore, we characterized the impact of IEDs on the FCN through simulations and EEG analysis. METHODS: We introduced simulated IEDs to sleep EEG recordings of eight healthy controls and analyzed the effect of IED amplitude and rate on the FCN. We then generated FCNs based on epochs with and without IEDs and compared them to the analogous FCNs from eight subjects with infantile spasms (IS), based on 1340 visually marked IEDs. Differences in network structure and strength were assessed. RESULTS: IEDs in IS subjects caused increased connectivity strength but no change in network structure. In controls, simulated IEDs with physiological amplitudes and rates did not alter network strength or structure. CONCLUSIONS: Increases in connectivity strength in IS subjects are not artifacts caused by the interictal spike waveform and may be related to the underlying pathophysiology of IS. SIGNIFICANCE: Dynamic changes in EEG-based FCNs during IEDs may be valuable for identification of pathological networks associated with epilepsy.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia/métodos , Rede Nervosa/fisiologia , Espasmos Infantis/fisiopatologia , Feminino , Humanos , Lactente , Masculino , Estudos Retrospectivos , Espasmos Infantis/diagnóstico
19.
Front Neurosci ; 14: 609670, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33510613

RESUMO

While interest toward caloric restriction (CR) in various models of brain injury has increased in recent decades, studies have predominantly focused on the benefits of chronic or intermittent CR. The effects of ultra-short, including overnight, CR on acute ischemic brain injury are not well studied. Here, we show that overnight caloric restriction (75% over 14 h) prior to asphyxial cardiac arrest and resuscitation (CA) improves survival and neurological recovery as measured by, behavioral testing on neurological deficit scores, faster recovery of quantitative electroencephalography (EEG) burst suppression ratio, and complete prevention of neurodegeneration in multiple regions of the brain. We also show that overnight CR normalizes stress-induced hyperglycemia, while significantly decreasing insulin and glucagon production and increasing corticosterone and ketone body production. The benefits seen with ultra-short CR appear independent of Sirtuin 1 (SIRT-1) and brain-derived neurotrophic factor (BDNF) expression, which have been strongly linked to neuroprotective benefits seen in chronic CR. Mechanisms underlying neuroprotective effects remain to be defined, and may reveal targets for providing protection pre-CA or therapeutic interventions post-CA. These findings are also of high importance to basic sciences research as we demonstrate that minor, often-overlooked alterations to pre-experimental dietary procedures can significantly affect results, and by extension, research homogeneity and reproducibility, especially in acute ischemic brain injury models.

20.
IEEE J Biomed Health Inform ; 24(4): 1070-1079, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31478876

RESUMO

Detrended Fluctuation Analysis (DFA) is a statistical estimation algorithm used to assess long-range temporal dependence in neural time series. The algorithm produces a single number, the DFA exponent, that reflects the strength of long-range temporal correlations in the data. No methods have been developed to generate confidence intervals for the DFA exponent for a single time series segment. Thus, we present a statistical measure of uncertainty for the DFA exponent in electroencephalographic (EEG) data via application of a moving-block bootstrap (MBB). We tested the effect of three data characteristics on the DFA exponent: (1) time series length, (2) the presence of artifacts, and (3) the presence of discontinuities. We found that signal lengths of ∼5 minutes produced stable measurements of the DFA exponent and that the presence of artifacts positively biased DFA exponent distributions. In comparison, the impact of discontinuities was small, even those associated with artifact removal. We show that it is possible to combine a moving block bootstrap with DFA to obtain an accurate estimate of the DFA exponent as well as its associated confidence intervals in both simulated data and human EEG data. We applied the proposed method to human EEG data to (1) calculate a time-varying estimate of long-range temporal dependence during a sleep-wake cycle of a healthy infant and (2) compare pre- and post-treatment EEG data within individual subjects with pediatric epilepsy. Our proposed method enables dynamic tracking of the DFA exponent across the entire recording period and permits within-subject comparisons, expanding the utility of the DFA algorithm by providing a measure of certainty and formal tests of statistical significance for the estimation of long-range temporal dependence in neural data.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador , Algoritmos , Artefatos , Simulação por Computador , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Fractais , Humanos , Lactente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...