Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 224: 116231, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38648904

RESUMO

In human, the cytochrome P450 3A (CYP3A) subfamily of drug-metabolizing enzymes (DMEs) is responsible for a significant number of phase I reactions, with the CYP3A4 isoform superintending the hepatic and intestinal metabolism of diverse endobiotic and xenobiotic compounds. The CYP3A4-dependent bioactivation of chemicals may result in hepatotoxicity and trigger carcinogenesis. In cattle, four CYP3A genes (CYP3A74, CYP3A76, CYP3A28 and CYP3A24) have been identified. Despite cattle being daily exposed to xenobiotics (e.g., mycotoxins, food additives, drugs and pesticides), the existing knowledge about the contribution of CYP3A in bovine hepatic metabolism is still incomplete. Nowadays, CRISPR/Cas9 mediated knockout (KO) is a valuable method to generate in vivo and in vitro models for studying the metabolism of xenobiotics. In the present study, we successfully performed CRISPR/Cas9-mediated KO of bovine CYP3A74, human CYP3A4-like, in a bovine foetal hepatocyte cell line (BFH12). After clonal expansion and selection, CYP3A74 ablation was confirmed at the DNA, mRNA, and protein level. The subsequent characterization of the CYP3A74 KO clone highlighted significant transcriptomic changes (RNA-sequencing) associated with the regulation of cell cycle and proliferation, immune and inflammatory response, as well as metabolic processes. Overall, this study successfully developed a new CYP3A74 KO in vitro model by using CRISPR/Cas9 technology, which represents a novel resource for xenobiotic metabolism studies in cattle. Furthermore, the transcriptomic analysis suggests a key role of CYP3A74 in bovine hepatocyte cell cycle regulation and metabolic homeostasis.


Assuntos
Sistemas CRISPR-Cas , Citocromo P-450 CYP3A , Técnicas de Inativação de Genes , Hepatócitos , Bovinos , Animais , Hepatócitos/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Técnicas de Inativação de Genes/métodos , Linhagem Celular
2.
Cell Biol Toxicol ; 40(1): 18, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38528259

RESUMO

The cytochrome P450 1A (CYP1A) subfamily of xenobiotic metabolizing enzymes (XMEs) consists of two different isoforms, namely CYP1A1 and CYP1A2, which are highly conserved among species. These two isoenzymes are involved in the biotransformation of many endogenous compounds as well as in the bioactivation of several xenobiotics into carcinogenic derivatives, thereby increasing the risk of tumour development. Cattle (Bos taurus) are one of the most important food-producing animal species, being a significant source of nutrition worldwide. Despite daily exposure to xenobiotics, data on the contribution of CYP1A to bovine hepatic metabolism are still scarce. The CRISPR/Cas9-mediated knockout (KO) is a useful method for generating in vivo and in vitro models for studying xenobiotic biotransformations. In this study, we applied the ribonucleoprotein (RNP)-complex approach to successfully obtain the KO of CYP1A1 in a bovine foetal hepatocyte cell line (BFH12). After clonal expansion and selection, CYP1A1 excision was confirmed at the DNA, mRNA and protein level. Therefore, RNA-seq analysis revealed significant transcriptomic changes associated with cell cycle regulation, proliferation, and detoxification processes as well as on iron, lipid and mitochondrial homeostasis. Altogether, this study successfully generates a new bovine CYP1A1 KO in vitro model, representing a valuable resource for xenobiotic metabolism studies in this important farm animal species.


Assuntos
Citocromo P-450 CYP1A1 , Xenobióticos , Bovinos , Animais , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Sistemas CRISPR-Cas/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/metabolismo , Linhagem Celular
3.
Int J Mol Sci ; 24(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37298348

RESUMO

Among veterinary antibiotics, flumequine (FLU) is still widely used in aquaculture due to its efficacy and cost-effectiveness. Although it was synthesized more than 50 years ago, a complete toxicological framework of possible side effects on non-target species is still far from being achieved. The aim of this research was to investigate the FLU molecular mechanisms in Daphnia magna, a planktonic crustacean recognized as a model species for ecotoxicological studies. Two different FLU concentrations (2.0 mg L-1 and 0.2 mg L-1) were assayed in general accordance with OECD Guideline 211, with some proper adaptations. Exposure to FLU (2.0 mg L-1) caused alteration of phenotypic traits, with a significant reduction in survival rate, body growth, and reproduction. The lower concentration (0.2 mg L-1) did not affect phenotypic traits but modulated gene expression, an effect which was even more evident under the higher exposure level. Indeed, in daphnids exposed to 2.0 mg L-1 FLU, several genes related with growth, development, structural components, and antioxidant response were significantly modulated. To the best of our knowledge, this is the first work showing the impact of FLU on the transcriptome of D. magna.


Assuntos
Transcriptoma , Poluentes Químicos da Água , Animais , Daphnia/genética , Poluentes Químicos da Água/toxicidade , Reprodução
4.
Toxins (Basel) ; 14(7)2022 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-35878173

RESUMO

Aflatoxin B1 (AFB1) is a major food safety concern, threatening the health of humans and animals. Bentonite (BEN) is an aluminosilicate clay used as a feed additive to reduce AFB1 presence in contaminated feedstuff. So far, few studies have characterized BEN toxicity and efficacy in vitro. In this study, cytotoxicity (WST-1 test), the effects on cell permeability (trans-epithelial electrical resistance and lucifer yellow dye incorporation), and transcriptional changes (RNA-seq) caused by BEN, AFB1 and their combination (AFB1 + BEN) were investigated in Caco-2 cells. Up to 0.1 mg/mL, BEN did not affect cell viability and permeability, but it reduced AFB1 cytotoxicity; however, at higher concentrations, BEN was cytotoxic. As to RNA-seq, 0.1 mg/mL BEN did not show effects on cell transcriptome, confirming that the interaction between BEN and AFB1 occurs in the medium. Data from AFB1 and AFB1 + BEN suggested AFB1 provoked most of the transcriptional changes, whereas BEN was preventive. The most interesting AFB1-targeted pathways for which BEN was effective were cell integrity, xenobiotic metabolism and transporters, basal metabolism, inflammation and immune response, p53 biological network, apoptosis and carcinogenesis. To our knowledge, this is the first study assessing the in vitro toxicity and whole-transcriptomic effects of BEN, alone or in the presence of AFB1.


Assuntos
Aflatoxina B1 , Bentonita , Aflatoxina B1/metabolismo , Ração Animal/análise , Animais , Bentonita/metabolismo , Bentonita/toxicidade , Células CACO-2 , Enterócitos/metabolismo , Humanos , Transcriptoma
5.
Vet Pathol ; 55(5): 645-653, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29807508

RESUMO

Canine splenic lymphoid nodules are currently classified as indolent lymphomas (marginal zone lymphoma [MZL], mantle cell lymphoma [MCL]) or nodular hyperplasia (lymphoid [LNH] or complex [CNH] type). Their differentiation can be difficult on morphology, because of similar histologic appearance and poorly defined diagnostic criteria. Thirty-five surgical samples of splenic lymphoid nodules were reviewed in order to assess the diagnostic contribution of immunophenotyping, proliferative activity and clonality (PARR) in differentiating between hyperplastic and neoplastic lesions. Proliferative activity was evaluated by double immunolabeling for Ki-67 and CD79a, in order to separately assess the proliferative activity of B cells and non-B cells. Definitive diagnoses were MZL ( n = 11), MCL ( n = 4), LNH ( n = 10), and CNH ( n = 10). The overall concordance between histology and PARR was above 90%. Lymphomas had a significantly higher percentage of CD79a-positive areas (mean, 36.30%; P = .0004) and a higher B-cell proliferative activity (median Ki-67 index, 5.49%; P = .0012). The threshold value most accurately predicting a diagnosis of lymphoma was ≥28% of B-cell areas, with a Ki-67 index above 3%. Dogs were monitored for a median follow-up time of 870 days (IQR, 569-1225), and no relapses were documented. Overall median survival time was 1282 days. The combination of histology, immunohistochemistry and PARR can improve the diagnostic accuracy for canine splenic lymphoid nodules, although the long-term behavior of these lesions appears similar.


Assuntos
Doenças do Cão/patologia , Linfoma Folicular/veterinária , Neoplasias Esplênicas/veterinária , Animais , Linfócitos B/patologia , Complexo CD3/metabolismo , Antígenos CD79/metabolismo , Proliferação de Células , Doenças do Cão/diagnóstico , Cães , Feminino , Antígeno Ki-67/metabolismo , Linfoma Folicular/diagnóstico , Linfoma Folicular/patologia , Masculino , Baço/patologia , Neoplasias Esplênicas/diagnóstico , Neoplasias Esplênicas/patologia
6.
Xenobiotica ; 42(11): 1096-109, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22694178

RESUMO

In humans and rodents, phenobarbital (PB) induces hepatic and extra-hepatic drug metabolizing enzymes (DMEs) through the activation of specific nuclear receptors (NRs). In contrast, few data about PB transcriptional effects in veterinary species are available. The constitutive expression and modulation of PB-responsive NR and DME genes, following an oral PB challenge, were investigated in cattle liver and extra-hepatic tissues (duodenum, kidney, lung, testis, adrenal and muscle). Likewise to humans and rodents, target genes were expressed to a lower extent compared to the liver with few exceptions. Phenobarbital significantly affected hepatic CYP2B22, 2C31, 2C87, 3A and UDP-glucuronosyltransferase 1A1-like, glutathione S-transferase A1-like and sulfotransferase 1A1-like (SULT1A1-like) mRNAs and apoprotein amounts; in extra-hepatic tissues, only duodenum showed a significant down-regulation of SULT1A1-like gene and apoprotein. Nuclear receptor mRNAs were never affected by PB. Presented data are the first evidence about the constitutive expression of foremost DME and NR genes in cattle extra-hepatic tissues, and the data obtained following a PB challenge are suggestive of species-differences in drug metabolism; altogether, these information are of value for the extrapolation of pharmacotoxicological data among species, the characterization of drug-drug interactions as well as the animal and consumer's risk caused by harmful residues formation.


Assuntos
Bovinos/metabolismo , Hipnóticos e Sedativos/farmacologia , Inativação Metabólica , Fígado/enzimologia , Fenobarbital/farmacologia , Animais , Fígado/efeitos dos fármacos , Masculino , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores Citoplasmáticos e Nucleares/metabolismo
7.
Toxicol In Vitro ; 26(7): 1224-32, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22713311

RESUMO

Cattle hepatocytes have already been used in veterinary in vitro toxicology, but their usefulness as a multi-parametric screening bioassay has never been investigated so far. In this study, cattle hepatocytes were incubated with illicit steroids/prohormones (boldenone, BOLD; its precursor boldione, ADD; dehydroepiandrosterone, DHEA; an association of ADD:BOLD), to characterize their transcriptional effects on drug metabolizing enzymes (DMEs) and related nuclear receptors (NRs), on cytochrome P450 3A (CYP3A) apoprotein and catalytic activity as well as to determine ADD and BOLD metabolite profiling. DHEA-exposed cells showed an up-regulation (higher than 2.5-fold changes) of three out of six NRs, CYP2B22 and CYP2C87; likewise, ADD:BOLD increased CYP4A11 mRNA levels. In contrast, a reduction of CYP1A1 and CYP2E1 mRNAs (lower than 2.5(-1)-fold changes) was noticed in ADD- and DHEA-incubated cells. No effect was noticed on CYP3A gene and protein expression, though an inhibition of 6ß-, 2ß- and 16ß-hydroxylation of testosterone (higher than 60% of control cells) was observed in ADD- and BOLD-exposed cells. Finally, 17α-BOLD was the main metabolite extracted from hepatocyte media incubated with ADD and BOLD, but several mono-hydroxylated BOLD and ADD derivatives were detected, too. Collectively, cattle hepatocytes can represent a complementary screening bioassay, useful to characterize growth promoters metabolite profiling and their effects upon DMEs expression, regulation and function.


Assuntos
Anabolizantes/farmacologia , Hepatócitos/efeitos dos fármacos , Esteroides/farmacologia , Detecção do Abuso de Substâncias/métodos , Androstadienos/farmacologia , Alternativas aos Testes com Animais , Animais , Bioensaio , Bovinos , Células Cultivadas , Desidroepiandrosterona/farmacologia , Combinação de Medicamentos , Feminino , Hepatócitos/metabolismo , Inativação Metabólica , Testosterona/análogos & derivados , Testosterona/farmacologia
8.
Drug Metab Pharmacokinet ; 27(5): 495-505, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22447117

RESUMO

In the present study, transcriptional and post-translational effects of culturing time and prototypical cytochrome P450 3A (CYP3A) inducers on principal nuclear receptors (NRs), CYP2B22, 2C and 3A were investigated in long-term stored (~10 years) cryopreserved pig hepatocytes (CPHs). In the time-course study, a crush and rise effect was observed for pregnane X receptor (NR1I2) and constitutive androstane receptor (NR1I3) mRNAs, while a time-dependent increase of retinoid X receptor alpha (NR2B1) was noticed. Cytochrome P450 gene expression profiles were down-regulated as a function of time. In the induction study, an increase of NR1I2, NR1I3 and NR2B1 mRNAs was observed in dexamethasone-exposed CPHs. About CYPs, an overall up-regulation was seen in CPHs exposed to phenobarbital, while dexamethasone and rifampicin up-regulated only CYP3A. In both studies, transcriptional CYP results were confirmed at the post-translational level (immunoblotting and enzyme activities), except for CYP2B immunoblotting in the induction study. The present data demonstrate that long-term stored CPHs may be used to investigate mechanisms involved in CYPs regulation, expression and function; provide further info about NR regulation of CYPs, and confirm species-differences in these mechanisms of regulation; finally, they suggest the usefulness and relevance of gene expression profiling to early detect any modulation of CYP expression and bioactivity.


Assuntos
Sistema Enzimático do Citocromo P-450/biossíntese , Hepatócitos/citologia , Hepatócitos/metabolismo , RNA Mensageiro/genética , Receptores Citoplasmáticos e Nucleares/genética , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Receptor Constitutivo de Androstano , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Dexametasona/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Indução Enzimática/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Isoenzimas , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/genética , RNA Mensageiro/biossíntese , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptor X Retinoide alfa/genética , Receptor X Retinoide alfa/metabolismo , Suínos , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
9.
J Vet Diagn Invest ; 24(1): 116-26, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22362941

RESUMO

Cutaneous mast cell tumors (MCTs) are among the most common neoplasms in dogs and show a highly variable biologic behavior. Histological grading, cell proliferation markers, and KIT immunohistochemistry are typically used to predict post-surgical prognosis. In the present study, c-KIT messenger RNA (mRNA) expression was measured in canine MCTs and its relationship with tumor grade, immunohistochemical staining pattern, post-surgical prognosis, and mutations was investigated. A significant increase of c-KIT mRNA was observed in MCTs versus healthy skin and surgical margins. Mutations were observed in 8.3% of cases. The KIT staining pattern was investigated for both grading systems. In particular, staining pattern III was associated with grade II (G2) and G3 MCTs, while staining patterns I and II were associated with G1 and G2 MCTs. Considering the 2-tier histological grading, the high grade was mainly associated with pattern III (71%) while the low grade was associated with patterns II (70%) and I (28%). A weak association between the KIT staining pattern and outcome was also observed. The results obtained suggest that c-KIT mRNA is overexpressed in canine MCT, although the fold variations were not associated with the protein localization or complementary DNA mutations. These observations suggested that the 3 events were independent. The histological grading and the KIT staining pattern have prognostic value as previously published. Staining pattern I could be especially helpful in predicting a good prognosis of G2 MCTs. Sequence mutations were not necessarily suggestive of a worse prognosis, but might be useful in choosing a chemotherapy protocol.


Assuntos
Doenças do Cão/diagnóstico , Mastocitose Cutânea/veterinária , Proteínas Proto-Oncogênicas c-kit/genética , Animais , Doenças do Cão/genética , Doenças do Cão/patologia , Doenças do Cão/cirurgia , Cães , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Masculino , Mastocitose Cutânea/diagnóstico , Mastocitose Cutânea/genética , Mastocitose Cutânea/patologia , Mastocitose Cutânea/cirurgia , Mutação/genética , Técnicas de Amplificação de Ácido Nucleico/veterinária , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Pele/patologia
10.
Xenobiotica ; 40(10): 670-80, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20666625

RESUMO

In veterinary species, little information about extrahepatic drug metabolism is actually available. Therefore, the presence of foremost drug metabolizing enzymes (DMEs) and related transcription factors mRNAs was initially investigated in cattle testis; then, their possible modulation following the in vivo exposure to illicit growth promoters (GPs), which represent a major issue in cattle farming, was explored. All target genes were expressed in cattle testis, albeit to a lower extent compared to liver ones; furthermore, illicit protocols containing dexamethasone and 17ß-oestradiol significantly up-regulated cytochrome P450 1A1, 2E1, oestrogen receptor-α and peroxisome proliferator-activated receptor-α mRNA levels. Overall, the constitutive expression of foremost DMEs and related transcription factors was demonstrated for the first time in cattle testis and illicit GPs were shown to affect pre-transcriptionally some of them, with possible consequences upon testicular xenobiotic drug metabolism.


Assuntos
Expressão Gênica/efeitos dos fármacos , Inativação Metabólica , Receptores de Esteroides/metabolismo , Testículo/enzimologia , Anabolizantes/farmacologia , Animais , Bovinos , Dexametasona/farmacologia , Estradiol/farmacologia , Estrogênios/farmacologia , Perfilação da Expressão Gênica , Glucocorticoides/farmacologia , Masculino , Receptores de Esteroides/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Testículo/efeitos dos fármacos
11.
Drug Metab Dispos ; 36(5): 885-93, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18268077

RESUMO

Cattle represent an important source of animal-derived food-products; nonetheless, our knowledge about the expression of drug-metabolizing enzymes (DMEs) in present and other food-producing animals still remains superficial, despite the obvious toxicological consequences. Breed represents an internal factor that modulates DME expression and catalytic activity. In the present work, the effect of breed upon relevant phase I and phase II DMEs was investigated at the pretranscriptional and post-translational levels in male Charolais (CH), Piedmontese (PM) and Blonde d'Aquitaine (BA) cattle. Because specific substrates for cattle have not yet been identified, the breed effect upon specific cytochrome P450 (P450), UDP-glucuronosyltransferase (UGT), or glutathione S-transferase (GST) DMEs, in terms of catalytic activity, was determined by using human marker substrates. Among P450s, benzphetamine N-demethylase, 16beta-, 6beta-, and 2beta-testosterone hydroxylase, aniline and p-nitrophenol hydroxylase, and alpha-naphthol and p-nitrophenol UGT activities were significantly higher in CH; in contrast, lower levels of CYP1A1-, CYP1A2-, CYP2B6-, CYP2C9-, CYP2C18-, CYP3A4-, and UGT1A1-like mRNAs were noticed, with CH < PM < or = BA as a trend. CYP2B and CYP3A mRNA results were confirmed with immunoblotting, too. As regards conjugative DMEs, UGT1A6-like mRNA levels were consistent with respective catalytic activities. Both 1-chloro-2,4-dinitrobenzene and 3,4-dichloronitrobenzene GST activities were higher in BA, and these results agreed with GSTA1-, GSTM1-, and GSTP1-like mRNA amounts. Correlation analysis between catalytic activities and mRNAs showed either significant or uneven results, depending on the substrate. These findings confirm previous data obtained in laboratory species; however, further studies are required to ascribe this behavior to pretranscriptional or post-translational phenomena.


Assuntos
Bovinos/genética , Sistema Enzimático do Citocromo P-450/genética , Perfilação da Expressão Gênica , Glucuronosiltransferase/genética , Glutationa Transferase/genética , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronosiltransferase/metabolismo , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Fígado/metabolismo , Masculino , Microssomos Hepáticos/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , RNA Mensageiro/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...