Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(14): 9656-9667, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38525059

RESUMO

The Cu(i)-catalyzed Huisgen cycloaddition click chemistry reaction is of particular interest in the production of paper sheets or natural fiber composites since it leads to the formation of chemically stable bonds between two fibers. This study focuses on the click chemistry modification of kraft pulp fibers. We based our approach on prior research that treated kraft fibers using click chemistry, including propargylation and tosylation reactions. Our focus was on enhancing these treatments to achieve better final sheet properties. After the azidation of tosylated fibers, the crosslinking is carried out with and without a catalyst using water as a solvent to form enhanced kraft fiber sheets. The chemical characterization and the mechanical properties of fibers obtained at intermediate stages confirmed the presence of various functions on the surface of the modified fibers, with a very high degree of substitution and the inter-fiber cross-linking by click chemistry. The presence of inter-fibers covalent bonds led to significant improvements in the mechanical strength and tensile stiffness of the sheets.

2.
Biomacromolecules ; 24(11): 5290-5302, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831506

RESUMO

Proteinaceous amyloid fibrils are one of the stiffest biopolymers due to their extensive cross-ß-sheet quaternary structure, whereas cellulose nanofibrils (CNFs) exhibit interesting properties associated with their nanoscale size, morphology, large surface area, and biodegradability. Herein, CNFs were supplemented with amyloid fibrils assembled from the Curli-specific gene A (CsgA) protein, the main component of bacterial biofilms. The resulting composites showed superior mechanical properties, up to a 7-fold increase compared to unmodified CNF films. Wettability and thermogravimetric analyses demonstrated high surface hydrophobicity and robust thermal tolerance. Bulk spectroscopic characterization of CNF-CsgA films revealed key insights into the molecular organization within the bionanocomposites. Atomic force microscopy and photoinduced force microscopy revealed the high-resolution location of curli assemblies into the CNF films. This novel sustainable and cost-effective CNF-based bionanocomposites supplemented with intertwined bacterial amyloid fibrils opens novel directions for environmentally friendly applications demanding high mechanical, water-repelling properties, and thermal resistance.


Assuntos
Celulose , Nanofibras , Celulose/química , Amiloide/química , Biopolímeros/química , Proteínas Amiloidogênicas , Microscopia de Força Atômica , Nanofibras/química
3.
J Compos Mater ; 57(21): 3347-3364, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37663436

RESUMO

Designing bio-composites for structural applications requires a thorough understanding of their mechanical behavior. In this study, we examined the differences in the tensile strength and drop-weight impact response between polypropylene reinforced with flax fibers and that reinforced with pinewood short fibers, as both fibers differ in composition (cellulose, hemicellulose, and lignin) and length-to-diameter ratio. We found that flax fibers, which have higher cellulose content and are twice as long as pine fibers, increased the stiffness and shock resistance of bio-composite materials. However, pine fibers, which contain more lignin, showed increased material ductility and energy absorption. Impulse excitation, acoustic emission and micro-CT techniques were used to evaluate the post-impact mechanical properties and the contribution of each damage mechanism to the final material failure (tearing). The experimental results were used to validate a model based on finite elements. Our results revealed that the experimental and finite-element analyses were in good agreement.

4.
SN Appl Sci ; 3(6): 643, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34761164

RESUMO

Slow pyrolysis is widely used to convert biomass into useable form of energy. Ultrasound pre-treatment assisted pyrolysis is a recently emerging methodology to improve the physicochemical properties of products derived. Biochar, the solid residues obtained from pyrolysis, is getting considerable attention because of its good physicochemical properties. Various modification techniques have been implemented on biochars to enhance their properties. Ultrasonic pre-treated wood biochar has showcased efficient surface and adsorption properties. Iron impregnated biochar is interesting as it has potentially proved the efficiency as an efficient low-cost catalyst. In this study, by combining the advantages of ultrasonic pre-treatment and iron impregnation, we have synthesized a series of Fe-impregnated biochar from softwood chips. Pre- and post-pyrolysis methods using a lab-scale pyrolyser had been implemented to compare the pyrolysis product yields and degree of impregnation. Biochars derived from ultrasound pre-treated woodchips by post pyrolysis demonstrated better impregnation of Fe ions on surface with better distribution of pyrolysis products such as biochar and biogas. The surface functionality of all ultrasound pre-treated biochars remained the same. However, post-pyrolysed samples at high frequency ultrasound pre-treatment showed better thermal stability. The chemical characteristics of these modified biochars are interesting and can indeed be used as a cost-effective replacement for various catalytic applications.

5.
J Environ Manage ; 290: 112569, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33865155

RESUMO

Physical and chemical modification on biochar is an interesting approach to enhance the properties and make them potential candidates in adsorption of heavy metals from water. Studies have shown that ultrasound treatments as well as alkali activations on biochar has positive impact on adsorption behaviour of the material. Base activation on biochar derived from ultrasound pre-treated woodchips were studied to understand the influence of ultrasound pre-treatment on chemical modification of biochar and the adsorption properties emerged from it. 40 and 170 kHz ultrasound pre-treated softwood woodchips were subjected to laboratory scale pyrolysis and the resulted biochars were treated with NaOH. The physicochemical properties were examined, and the adsorption experiments revealed that ultrasound pre-treatment assisted biochars have better adsorption capacity as compared to untreated biochar samples after activation. 170 kHz pre-treated sample exhibited an equilibrium adsorption capacity of 19.99 mg/g which is almost 22 times higher than that of corresponding non-activated sample. The ultrasound pre-treated samples showed improved competitive adsorption behaviour towards copper ions in comparison with nickel or lead. The overall study suggests that ultrasound pre-treated biochars combined with alkali activation enhances the heavy metal removal efficiency and these engineered biochars can be used as an effective adsorbent in the field of wastewater treatment.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Ultrassom , Água , Poluentes Químicos da Água/análise
6.
Carbohydr Polym ; 254: 117411, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33357897

RESUMO

Nanofibrillated cellulose films have garnered attention due to their interesting proprieties such as transparency and high mechanical strength. However, they are brittle, very hydrophilic, which is decreasing their potential applications. We have successfully achieved a simple and effective chemical modification based on polymer grafting and through plasticizer additions to increase the performance of the films as well as to improve the compatibility within conventional polymer. A preliminary study shows the possibility of using this film as an interlayer in safety glazing and/or bulletproof glass with polyvinyl butyral (PVB). The modified NFC films displays high optical transmittance (93 %), increases tensile stretch and is more hydrophobic (83°). A higher flexibility was also achieved, as the film was greatly stretched and bended without cracking or breaking. The NFC / PVB composite has three times more elongation at break, 13 % more specific energy absorbed with a half-tensile stress compared to an interlayer of PVB.


Assuntos
Celulose/química , Nanofibras/química , Petróleo , Plastificantes/química , Maleabilidade , Polivinil/química , Vidro/química , Interações Hidrofóbicas e Hidrofílicas , Resistência à Tração , Água/química
7.
Mater Sci Eng C Mater Biol Appl ; 69: 977-84, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27612793

RESUMO

In this study, a composite film based on TEMPO-oxidized cellulose nanofibers (TOCN), polyvinyl alcohol (PVA) and polypyrrole (PPy) was synthesized in situ by a chemical polymerization, resulting in the induced absorption of PPy on the surface of the TOCN. The composite films were investigated with scanning electron microscopy, thermogravimetric analysis, contact angle measurements, mechanical tests, and evaluation of antibacterial properties. The developed composite has nearly identical Young modulus (3.4GPa), elongation (2.6%) and tensile stress (about 51MPa) to TOCN even if PPy, which as poor properties by itself, was incorporated. From the energy-dispersive X-ray spectroscopy (EDX) results, it was shown that PPy is mainly located on the composite surface. Results confirmed by an increase from 54.5 to 83° in contact angle, an increased heat protection (Thermogravimetric analysis) and a decrease in surface energy. The nanocomposites were also evaluated for antibacterial activity against bacteria occasionally found in food: Gram-positive Bacillus subtilis (B. subtilis) and Gram-negative bacteria Escherichia coli (E. coli). The results indicate that the nanocomposites are effective against all of the bacteria studied as shown by the decrease of 5.2logcolonyformingunits (CFU) for B. subtilis and 6.5logCFU for E. coli. Resulting in the total destruction of the studied bacteria. The perfect match between the resulting inhibition zone and the composite surface area has demonstrated that our composite was contact active with a slight leaching of PPy. Our composite was successful as an active packaging on meat (liver) as bacteria were killed by contact, thereby preventing the spread of possible diseases. While it has not been tested on bacteria found in medicine, TOCN/PVA-PPy film may be able to act as an active sterile packaging for surgical instruments.


Assuntos
Antibacterianos/farmacologia , Celulose/química , Fenômenos Mecânicos , Nanopartículas/química , Polímeros/química , Pirróis/química , Animais , Óxidos N-Cíclicos/química , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Nanofibras/química , Álcool de Polivinil/química , Espectrometria por Raios X , Sus scrofa , Temperatura , Termogravimetria
8.
Ultrason Sonochem ; 20(1): 103-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22939000

RESUMO

The efficiency of cellulose oxidation mediated by the 4-acetamido-TEMPO radical under ultrasonic cavitation was investigated using two ultrasonic systems: a batch lab scale ultrasonic bath with a glass reactor and a semi-continuous flow-through sonoreactor. The main objective was to explore the possibility of scaling up the production of oxidized cellulose under ultrasound, from a lab scale process to a pilot plant process, which served as a precursor for producing nanofibrils cellulose. It was found that under acoustic cavitation, the efficiency of TEMPO-mediation oxidation of native cellulose was significantly improved, particularly in the flow-through sonoreactor. In comparison with the glass reactor, the flow-through sonoreactor reduce the applied energy by 88% while increasing 7.8 times the production rate of radicals. These results enable a possibility of producing oxidized fibers for industrial applications.

9.
Nanomaterials (Basel) ; 2(3): 286-297, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-28348309

RESUMO

Cellulose nanofibers can be produced using a combination of TEMPO, sodium bromide (NaBr) and sodium hypochlorite, and mechanical dispersion. Recently, this process has been the subject of intensive investigation. However, studies on the aspects of mechanical treatment of this process remain marginal. The main objective of this study is to evaluate the high shear dispersion parameters (e.g., consistency, stator-rotor gap, recirculation rate and pH) and determine their influences on nanocellulose production using ultrasound-assisted TEMPO-oxidation of Kraft pulp. All nanofiber gels produced in this study exhibited rheological behaviors known as shear thinning. From all the dispersion parameters, the following conditions were identified as optimal: 0.042 mm stator-rotor gap, 200 mL/min recycle rate, dispersion pH of 7 and a feed consistency of 2%. High quality cellulose gel could be produced under these conditions. This finding is surely of great interest for the pulp and paper industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...