Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 410(1): 19-37, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18215152

RESUMO

The TOR (target of rapamycin), an atypical protein kinase, is evolutionarily conserved from yeast to man. Pharmacological studies using rapamycin to inhibit TOR and yeast genetic studies have provided key insights on the function of TOR in growth regulation. One of the first bona fide cellular targets of TOR was the mammalian protein kinase p70 S6K (p70 S6 kinase), a member of a family of kinases called AGC (protein kinase A/protein kinase G/protein kinase C-family) kinases, which include PKA (cAMP-dependent protein kinase A), PKG (cGMP-dependent kinase) and PKC (protein kinase C). AGC kinases are also highly conserved and play a myriad of roles in cellular growth, proliferation and survival. The AGC kinases are regulated by a common scheme that involves phosphorylation of the kinase activation loop by PDK1 (phosphoinositide-dependent kinase 1), and phosphorylation at one or more sites at the C-terminal tail. The identification of two distinct TOR protein complexes, TORC1 (TOR complex 1) and TORC2, with different sensitivities to rapamycin, revealed that TOR, as part of either complex, can mediate phosphorylation at the C-terminal tail for optimal activation of a number of AGC kinases. Together, these studies elucidated that a fundamental function of TOR conserved throughout evolution may be to balance growth versus survival signals by regulating AGC kinases in response to nutrients and environmental conditions. This present review highlights this emerging function of TOR that is conserved from budding and fission yeast to mammals.


Assuntos
Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Animais , Humanos , Mamíferos , Conformação Proteica , Proteínas Serina-Treonina Quinases , Proteínas de Saccharomyces cerevisiae/química
2.
Yeast ; 20(7): 611-24, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12734799

RESUMO

Cellular integrity in yeasts is ensured by a rigid cell wall whose synthesis is controlled by a MAP kinase signal transduction cascade. In Saccharomyces cerevisiae upstream regulatory components of this MAP kinase pathway involve a single protein kinase C, which is regulated in part by interaction with the small GTPase Rho1p. This small G protein is in turn rendered inactive (GDP-bound) or is activated (GTP-bound) by the influence of GTPase activating proteins (GAPs) and the GDP/GTP exchange factors (GEFs), respectively. We report here on the isolation of a gene from Kluyveromyces lactis, KlROM2, which encodes a member of the latter protein family. The nucleotide sequence contains an open reading frame of 1227 amino acids, with an overall identity of 57% to the Rom2 protein of S. cerevisiae. Four conserved sequence motifs could be identified: a RhoGEF domain, a DEP sequence, a CNH domain and a less conserved pleckstrin homology (PH) sequence. Klrom2 null mutants show a lethal phenotype, which indicates that the gene may encode the only functional GEF regulating the cellular integrity pathway in K. lactis. Conditional genomic expression of KlROM2 resulted in sensitivity towards caffeine and Calcofluor white as typical phenotypes of mutants defective in this pathway. Overexpression of KIROM2 from multicopy plasmids under the control of the ScGAL1 promoter severely impaired growth in both S. cerevisiae and in K. lactis. The fact that the lethal phenotype was not prevented in mpk1 deletion mutants indicates that growth inhibition is not simply caused by hyperactivation of the Pkc1p signal transduction pathway.


Assuntos
Proteínas Fúngicas/genética , Genes Fúngicos , Fatores de Troca do Nucleotídeo Guanina/genética , Kluyveromyces/genética , Sequência de Bases , DNA Fúngico/genética , Escherichia coli/genética , Expressão Gênica , Teste de Complementação Genética , Kluyveromyces/metabolismo , Sistema de Sinalização das MAP Quinases , Dados de Sequência Molecular , Mutação , Fenótipo , Plasmídeos/genética , Proteína Quinase C/genética , Mapeamento por Restrição , Saccharomyces cerevisiae/genética
3.
Mol Cell ; 10(3): 457-68, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12408816

RESUMO

The target of rapamycin (TOR) proteins in Saccharomyces cerevisiae, TOR1 and TOR2, redundantly regulate growth in a rapamycin-sensitive manner. TOR2 additionally regulates polarization of the actin cytoskeleton in a rapamycin-insensitive manner. We describe two functionally distinct TOR complexes. TOR Complex 1 (TORC1) contains TOR1 or TOR2, KOG1 (YHR186c), and LST8. TORC2 contains TOR2, AVO1 (YOL078w), AVO2 (YMR068w), AVO3 (YER093c), and LST8. FKBP-rapamycin binds TORC1, and TORC1 disruption mimics rapamycin treatment, suggesting that TORC1 mediates the rapamycin-sensitive, TOR-shared pathway. FKBP-rapamycin fails to bind TORC2, and TORC2 disruption causes an actin defect, suggesting that TORC2 mediates the rapamycin-insensitive, TOR2-unique pathway. Thus, the distinct TOR complexes account for the diversity, specificity, and selective rapamycin inhibition of TOR signaling. TORC1 and possibly TORC2 are conserved from yeast to man.


Assuntos
Proteínas Fúngicas/metabolismo , Fosfatidilinositol 3-Quinases , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Sirolimo/farmacologia , Actinas/metabolismo , Animais , Antifúngicos/farmacologia , Proteínas de Ciclo Celular , Linhagem Celular , Citoesqueleto/metabolismo , Farmacorresistência Fúngica , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Genes Reporter , Glicogênio/metabolismo , Humanos , Substâncias Macromoleculares , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/isolamento & purificação , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Distribuição Tecidual
4.
J Cell Sci ; 115(Pt 15): 3139-48, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12118069

RESUMO

The Rho family of proteins and their effectors are key regulators involved in many eukaryotic cell functions. In Saccharomyces cerevisiae the family consists of six members, Rho1p to Rho5p and Cdc42p. With the exception of Rho5p, these enzymes have been assigned different biological functions, including the regulation of polar growth, morphogenesis, actin cytoskeleton, budding and secretion. Here we show that a rho5 deletion results in an increased activity of the protein kinase C (Pkc1p)-dependent signal transduction pathway. Accordingly, the deletion shows an increased resistance to drugs such as caffeine, Calcofluor white and Congo red, which indicates activation of the pathway. In contrast, overexpression of an activated RHO5Q91H mutant renders cells more sensitive to these drugs. We conclude that Rho5p acts as an off-switch for the MAP-kinase cascade, which differentiates between MAP-kinase-dependent and -independent functions of Pkc1p. Kinetics of actin depolarisation and repolarisation after heat treatment of rho5 deletions as well as strains overexpressing the activated RHO5Q91H allele provide further evidence for such a function.


Assuntos
Regulação para Baixo/genética , Proteínas Fúngicas/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Proteína Quinase C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas rho de Ligação ao GTP/deficiência , Actinas/biossíntese , Actinas/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Temperatura Alta/efeitos adversos , Mutação/genética , Fenótipo , Proteína Quinase C/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Proteínas rho de Ligação ao GTP/genética
5.
Mol Microbiol ; 44(3): 829-40, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11994162

RESUMO

Protein kinase C from Saccharomyces cerevisiae (Pkc1p) constitutes a prototypic member of the protein kinase C superfamily, as it shares all the conserved regions scattered among the isoenzymes of higher eukaryotes. The functional significance of some of the conserved domains in the yeast enzyme has not yet been investigated. We examined strains carrying a partial deletion in the amino-terminal region of the enzyme, which is homologous to the HR1 of the protein kinase C-related kinases. This strain was sensitive to the presence of caffeine, Calcofluor white and Congo red, all drugs known to affect mutants defective in the signal transduction pathway ensuring cellular integrity in which Pkc1p is a central component. Isolation of a single point mutation in HR1A, which shares the sensitivity to the drugs mentioned, confirmed the importance of this region for proper regulation of protein kinase C activity in vivo. Two-hybrid analysis provided evidence for an interaction of the small GTPase Rho1p with the HR1A region, in addition to the reported interaction of this protein with the C1 region of Pkc1p. MAP kinase phosphorylation assays indicate that this Rho1p-Pkc1p/HR1A interaction does not result in an activation of the kinase cascade. The intragenic lethality of mutants affected in both HR1A and the C1 domain reported in this work implies an essential role for Rho1p-Pkc1p interaction in yeast.


Assuntos
Proteína Quinase C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas rho de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Benzenossulfonatos/farmacologia , Cafeína/farmacologia , Vermelho Congo/farmacologia , Dados de Sequência Molecular , Mutagênese , Fosforilação , Mutação Puntual , Mapeamento de Interação de Proteínas , Proteína Quinase C/química , Proteína Quinase C/genética , Processamento de Proteína Pós-Traducional , Subunidades Proteicas , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Proteínas rho de Ligação ao GTP/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...