Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-498624

RESUMO

Patients with severe COVID-19 develop acute respiratory distress syndrome (ARDS) that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that complement component 5a (C5a), through its cellular receptor C5aR1, has potent proinflammatory actions, and plays immunopathological roles in inflammatory diseases, we investigated whether C5a/C5aR1 pathway could be involved in COVID-19 pathophysiology. C5a/C5aR1 signaling increased locally in the lung, especially in neutrophils of critically ill COVID-19 patients compared to patients with influenza infection, as well as in the lung tissue of K18-hACE2 Tg mice (Tg mice) infected with SARS-CoV-2. Genetic and pharmacological inhibition of C5aR1 signaling ameliorated lung immunopathology in Tg-infected mice. Mechanistically, we found that C5aR1 signaling drives neutrophil extracellular trap (NET)s-dependent immunopathology. These data confirm the immunopathological role of C5a/C5aR1 signaling in COVID-19 and indicate that antagonist of C5aR1 could be useful for COVID-19 treatment.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248425

RESUMO

Understanding the pathology of COVID-19 is a global research priority. Early evidence suggests that the respiratory microbiome may be playing a role in disease progression, yet current studies report contradictory results. Here, we examine potential confounders in COVID-19 respiratory microbiome studies by analyzing the upper (n=58) and lower (n=35) respiratory tract microbiome in well-phenotyped COVID-19 patients and controls combining microbiome sequencing, viral load determination, and immunoprofiling. We found that time in the intensive care unit and the type of oxygen support, both of which are associated to additional treatments such as antibiotic usage, explained the most variation within the upper respiratory tract microbiome, while SARS-CoV-2 viral load had a reduced impact. Specifically, mechanical ventilation was linked to altered community structure, lower species- and higher strain-level diversity, and significant shifts in oral taxa previously associated with COVID-19. Single-cell transcriptomic analysis of the lower respiratory tract of mechanically ventilated COVID-19 patients identified specific oral bacteria, different to those observed in controls. These oral taxa were found physically associated with proinflammatory immune cells, which showed higher levels of inflammatory markers. Overall, our findings suggest confounders are driving contradictory results in current COVID-19 microbiome studies and careful attention needs to be paid to ICU stay and type of oxygen support, as bacteria favored in these conditions may contribute to the inflammatory phenotypes observed in severe COVID-19 patients.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-196519

RESUMO

How innate and adaptive lung immune responses to SARS-CoV-2 synchronize during COVID-19 pneumonitis and regulate disease severity is poorly established. To address this, we applied single-cell profiling to bronchoalveolar lavages from 44 patients with mild or critical COVID-19 versus non-COVID-19 pneumonia as control. Viral RNA-tracking delineated the infection phenotype to epithelial cells, but positioned mainly neutrophils at the forefront of viral clearance activity during COVID-19. In mild disease, neutrophils could execute their antiviral function in an immunologically controlled fashion, regulated by fully-differentiated T-helper-17 (TH17)-cells, as well as T-helper-1 (TH1)-cells, CD8+ resident-memory (TRM) and partially-exhausted (TEX) T-cells with good effector functions. This was paralleled by orderly phagocytic disposal of dead/stressed cells by fully-differentiated macrophages, otherwise characterized by anti-inflammatory and antigen-presenting characteristics, hence facilitating lung tissue repair. In critical disease, CD4+ TH1- and CD8+ TEX-cells were characterized by inflammation-associated stress and metabolic exhaustion, while CD4+ TH17- and CD8+ TRM-cells failed to differentiate. Consequently, T-cell effector function was largely impaired thereby possibly facilitating excessive neutrophil-based inflammation. This was accompanied by impaired monocyte-to-macrophage differentiation, with monocytes exhibiting an ATP-purinergic signalling-inflammasome footprint, thereby enabling COVID-19 associated fibrosis and worsening disease severity. Our work represents a major resource for understanding the lung-localised immunity and inflammation landscape during COVID-19.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20112979

RESUMO

The pandemic spread of the novel coronavirus SARS-CoV-2 is due, in part, to the immunological properties of the host-viral interaction. The clinical presentation varies greatly from individual to individual, with asymptomatic carriers, mild to moderate-presenting patients and severely affected patients. Variation in immune response to SARS-CoV-2 may underlie this clinical variation. Using a high dimensional systems immunology platform, we have analyzed the peripheral blood compartment of 6 healthy individuals, 23 mild-to-moderate COVID-19 patients and 20 severe COVID-19 patients. We identify distinct immunological signatures in the peripheral blood of the mild-to-moderate and severe COVID-19 patients, including T cell lymphopenia, more consistent with peripheral hypo-than hyper-immune activation. Unique to the severe COVID-19 cases was a large increase in the proportion of IL-10-secreting regulatory T cells, a lineage known to possess anti-inflammatory properties in the lung. Annotated data is openly available (https://flowrepository.ors/experiments/2713) with clinical correlates, as a systems immunology resource for the COVID-19 research community.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...