Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 256: 121647, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657311

RESUMO

Retention of microplastics (MPs) at the third largest wastewater treatment plant (WWTP) in Sweden was investigated. The plant is one of the most modern and advanced of its kind, with rapid sand filter for tertiary treatment in combination with mechanical, biological, and chemical treatment. It achieved a significantly high treatment efficiency, which brought the MP concentration in its discharge on par with concentrations measured in marine waters of the same region. This novel data shows that properly designed modern WWTPs can reduce the MP content of sewage down to background levels measured in the receiving aquatic environment. Opposite to current understanding of the retention of MP by WWTPs, a modern and well-designed WWTP does not have to be a significant point source for MP. MPs were quantified at all major treatment steps, including digester inlet and outlet sludge. MPs sized 10-500 µm were analyzed by a focal plane array based micro-Fourier transform infrared (FPA-µFTIR) microscopy, a hyperspectral imaging technique, while MPs above 500 µm were analyzed by Attenuated Total Reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Mass was estimated from the hyperspectral images for MPs <500 µm and from microscope images >500 µm. The overall treatment efficiency was in terms of MP counts 99.98 %, with a daily input of 6.42 × 1010 and output of 1.04 × 107 particles. The mass removal efficiency was 99.99 %. The mechanical part of the treatment, the pre-treatment, and primary stages, reduced both the MP counts and mass by approximately 71 %. The combined biological treatment, secondary settling, and final polishing with rapid sand filtration removed nearly all the remaining 29 %. MPs became successively smaller as they passed the different treatment steps. The digester inlet received 1.04 × 1011 MPs daily, while it discharged 9.96 × 1010 MPs, causing a small but not significant decrease in MP counts, with a corresponding MP mass reduction of 9.56 %.


Assuntos
Microplásticos , Água do Mar , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Microplásticos/análise , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Água do Mar/química , Suécia , Espectroscopia de Infravermelho com Transformada de Fourier , Esgotos/química , Purificação da Água/métodos
2.
Mar Pollut Bull ; 198: 115795, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38006870

RESUMO

Large area attenuated total reflectance-Fourier transform infrared spectroscopy (LAATR-FTIR) is introduced as a novel technique for detecting small microplastics (MPs) down to 1.3 µm. Two different LAATR units, one with a zinc selenide (ZnSe) and one with a germanium (Ge) crystal, were used to detect reference MPs < 20 µm, and MPs in marine water samples, and compared with µ-FTIR in transmission mode. The LAATR units performed well in identifying small MPs down to 1.3 µm. However, they were poorly suited for large MPs as uneven particle thickness resulted in uneven contact between crystal and particle, misinterpreting large MPs as many small MPs. However, for more homogeneous matrices, the technique was promising. Further assessment indicated that there was little difference in spectra quality between transmission mode and LAATR mode. All in all, while LAATR units struggle to substitute transmission mode, it provides additional information and valuable information on small MPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Poluentes Químicos da Água/análise , Monitoramento Ambiental
3.
Sci Total Environ ; 902: 166513, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619728

RESUMO

Two analytical methods - both in active use at different laboratories - were tested and compared against each other to investigate how the procedure influences microplastic (MP) detection with micro Fourier Transform Infrared Spectroscopy (µFTIR) imaging. A representative composite water sample collected from the Danube River was divided into 12 subsamples, and processed following two different methods, which differed in MP isolation procedures, the optical substrate utilized for the chemical imaging, and the detection limit of the spectroscopic instruments. The first instrument had a nominal pixel resolution of 5.5 µm, while the second had a nominal resolution of 25 µm. These two methods led to different MP abundance, MP mass estimates, but not MP characteristics. Only looking at MPs > 50 µm, the first method showed a higher MP abundance, namely 418-2571 MP m-3 with MP mass estimates of 703-1900 µg m-3, while the second method yielded 16.7-72.1 MP m-3 with mass estimates of 222-439 µg m-3. Looking deeper into the steps of the methods showed that the MP isolation procedure contributed slightly to the difference in the result. However, the variability between individual samples was larger than the difference caused by the methods. Somewhat sample-dependent, the use of two different substrates (zinc selenide windows versus Anodisc filters) caused a substantial difference between results. This was due to a higher tendency for particles to agglomerate on the Anodisc filters, and an 'IR-halo' around particles on ZnSe windows when scanning with µFTIR. Finally, the µFTIR settings and nominal resolution caused significant differences in identifying MP size and mass estimate, which showed that the smaller the pixel size, the more accurately the particle boundary can be defined. These findings contributed to explaining disagreements between studies and addressed the importance of harmonization of methods.

4.
J Environ Manage ; 344: 118690, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586166

RESUMO

Microplastics accumulate in stormwater and can ultimately enter freshwater recipients, and pose a serious risk to aquatic life. This study investigated the effectiveness of lab-scale horizontal flow sand filters of differing lengths (25, 50 and 100 cm) in retaining four types of thermoplastic microplastics commonly occurring in stormwater runoff (polyamide, polyethylene, polypropylene, and polyethylene terephthalate). Despite the differences in particle shape, size and density, the study revealed that more than 98% of the spiked microplastics were retained in all filters, with a slightly increased removal with increased filter length. At a flow rate of 1 mL/min and after one week of operation, 62-84% of the added microplastics agglomerated in the first 2 cm of the filters. The agglomerated microplastics included 96% of high-density fibers. Larger-sized particles were retained in the sand media, while microplastics smaller than 50 µm were more often detected in the effluent. Microplastics were quantified and identified using imaging based micro Fourier Transform Infrared Spectroscopy. The efficient retention of microplastics in low-flow horizontal sand filters, demonstrated by the results, highlights their potential importance for stormwater management. This retention is facilitated by various factors, including microplastic agglomeration, particle sedimentation of heavy fibers and favorable particle-to-media size ratios.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Polipropilenos
5.
Environ Sci Technol ; 57(31): 11643-11655, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37497822

RESUMO

Microplastics (MPs) overlap in size with phytoplankton and can be ingested by zooplankton, transferring them to higher trophic levels. Copepods are the most abundant metazoans among zooplankton and the main link between primary producers and higher trophic levels. Ingestion of MPs has been investigated in the laboratory, but we still know little about the ingestion of MPs by zooplankton in the natural environment. In this study, we determined the concentration and characteristics of MPs down to 10 µm in zooplankton samples, sorted calanoid copepods, and fecal pellets collected in the Kattegat/Skagerrak Sea (Denmark). We found a median concentration of 1.7 × 10-3 MPs ind-1 in the zooplankton samples, 2.9 × 10-3 MPs ind-1 in the sorted-copepods, and 3 × 10-3 MPs per fecal pellet. Most MPs in the zooplankton samples and fecal pellets were fragments smaller than 100 µm, whereas fibers dominated in the sorted copepods. Based on the collected data, we estimated a MP budget for the surface layer (0-18 m), where copepods contained only 3% of the MPs in the water, while 5% of the MPs were packed in fecal pellets. However, the number of MPs exported daily to the pycnocline via fecal pellets was estimated to be 1.4% of the total MPs in the surface layer. Our results indicate that zooplankton are an entry point of small MPs in the food web, but the number of MPs in zooplankton and their fecal pellets was low compared with the number of MPs found in the water column and the occurrence and/or ingestion of MPs reported for nekton. This suggests a low risk of MP transferring to higher trophic levels through zooplankton and a quantitatively low, but ecologically relevant, contribution of fecal pellets to the vertical exportation of MPs in the ocean.


Assuntos
Monitoramento Ambiental , Cadeia Alimentar , Microplásticos , Poluentes Químicos da Água , Zooplâncton , Animais , Copépodes , Microplásticos/análise , Poluentes Químicos da Água/análise , Dinamarca , Fezes/química
6.
Sci Total Environ ; 865: 161255, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36596418

RESUMO

Microplastics (MPs) were quantified in Danish marine waters of the Kattegat and the southernmost part of Skagerrak bordering to it. Kattegat is a waterbody between Denmark and Sweden that receives inflow from the Baltic Sea and direct urban runoff from the metropolitan area of Copenhagen and Malmö. MPs were measured in 14 continuous transects while steaming between monitoring stations. MP levels tended to be highest close to the Copenhagen-Malmö area, albeit this was more obvious from the abundance of particles rather than mass. The outcome of the measurements allowed a rough MP budget in the Danish Straits region, suggesting that urban waste- and stormwater discharges could not be neglected as potential MP source in these waters. The marine samples were collected by pumping and filtering water over 10 µm steel filters, hereby sampling a total of 19.3 m3. They were prepared and analyzed by FPA-µFTIR imaging, and the scans interpreted to yield MP size, shape, polymer type, and estimated mass. The average concentration was 103 ± 86 items m-3, corresponding to 23.3 ± 28.3 µg m-3 (17-286 items m-3; 0.6-84.1 µg m-3). Most MPs were smaller than 100 µm and fragments dominated the samples. The carbonyl index was assessed for polyolefins, showing that oxidation increased with decreasing MP size, but did not correlate with distance to urban areas. A rough budget of MP in the Danish Straits region suggested that MPs discharged from urban waste- and stormwaters were an import source of MPs.

7.
Environ Pollut ; 318: 120853, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509350

RESUMO

Microplastics (MPs) are ubiquitous pollutants in the ocean, and there is a general concern about their persistence and potential effects on marine ecosystems. We still know little about the smaller size-fraction of marine MPs (MPs <300 µm), which are not collected with standard nets for MPs monitoring (e.g., Manta net). This study aims to determine the concentration, composition, and size distribution of MPs down to 10 µm in the Kattegat/Skagerrak area. Surface water samples were collected at fourteen stations using a plastic-free pump-filter device (UFO sampler) in October 2020. The samples were treated with an enzymatic-oxidative method and analyzed using FPA-µFTIR imaging. MPs concentrations ranged between 11 and 87 MP m-3, with 88% of the MPs being smaller than 300 µm. The most abundant shape of MPs were fragments (56%), and polyester, polypropylene, and polyethylene were the dominant synthetic polymer types. The concentration of MPs shows a significant positive correlation to the seawater density. Furthermore, there was a tendency towards higher MPs concentrations in the Northern and the Southern parts of the study area. The concentration of MPs collected with the UFO sampler was several orders of magnitude higher than those commonly found in samples collected with the Manta net due to the dominance of MP smaller size fractions. Despite the multiple potential sources of MPs in the study area, the level of MPs pollution in the surface waters was low compared (<100 MP m-3) to other regions. The concentrations of MPs found in the studied surface waters were six orders of magnitude lower than those causing negative effects on pelagic organisms based on laboratory exposure studies, thus is not expected to cause any impact on the pelagic food web.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Plásticos , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Dinamarca
8.
Environ Sci Technol ; 56(23): 16780-16788, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36375087

RESUMO

The seafloor is the major sink for microplastic (MP) pollutants. However, there is a lack of robust data on the historical evolution of MP pollution in the sediment compartment, particularly the sequestration and burial rate of small MPs. By combining a palaeoceanographic approach and state-of-the-art analytical methods for MP identification down to 11 µm in size, we present the first high-resolution reconstruction of MP pollution from an undisturbed sediment core collected in the NW Mediterranean Sea. Furthermore, we investigate the fate of MPs once buried in the sediments by evaluating the changes in the size distribution of the MPs and the weathering status of the polyolefins, polyethylene, and polypropylene. Our results indicate that the MP mass sequestered in the sediment compartment mimics the global plastic production from 1965 to 2016. We observed an increase in the weathering status of the polyolefins as the size decreased. However, the variability in the size and weathering status of the MPs throughout the sedimentary record indicated that these pollutants, once incorporated into sediments, remain preserved with no further degradation under conditions lacking remobilization.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Sedimentos Geológicos , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
9.
Water Res ; 202: 117429, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34304075

RESUMO

Understanding the multidimensionality of microplastics is essential for a realistic assessment of the risks these particles pose to the environment and human health. Here, we capture size, shape, area, polymer, volume and mass characteristics of >60,000 individual microplastic particles as continuous distributions. Particles originate from samples taken from different aquatic compartments, including surface water and sediments from the marine and freshwater environment, waste water effluents, and freshwater organisms. Data were obtained using state-of-the-art FTIR-imaging, using the same automated imaging post-processing software. We introduce a workflow with two quality criteria that assure minimum data quality loss due to volumetric and filter area subsampling. We find that probability density functions (PDFs) for particle length follow power law distributions, with median slopes ranging from 2.2 for marine surface water to 3.1 for biota samples, and that these slopes were compartment-specific. Polymer-specific PDFs for particle length demonstrated significant differences in slopes among polymers, hinting at polymer specific sources, removal or fragmentation processes. Furthermore, we provide PDFs for particle width, width to length ratio, area, specific surface area, volume and mass distributions and propose how these can represent the full diversity of toxicologically relevant dose metrics required for the assessment of microplastic risks.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Plásticos , Águas Residuárias/análise , Poluentes Químicos da Água/análise
10.
Mar Pollut Bull ; 162: 111807, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33162055

RESUMO

Petroleum waxes (PWs) are recognized as ubiquitously emerging marine pollutants. However, knowledge on their occurrence, particularly as persistent floaters of small size (<5 mm) in marine surface water, is scarce. For this study, 24 samples were collected in the North Sea by net-sampling (100 µm-mesh). Particles of wax-like appearance were detected at 14 stations. Similar appearing PWs from six stations with highest abundances were pooled per station and analyzed by ATR-FTIR (Attenuated total reflectance Fourier-transform infrared spectroscopy) and gas chromatography. Samples contained paraffin particles, being partly accompanied by substances like fatty acids and fatty alcohols. Using both analytical techniques provided a reliable detection of PWs and more details on their chemical composition. Furthermore, exemplarily the presence of PWs of 20-500 µm size was proven by µFTIR imaging. This study gives valuable insights into PW pollution in the North Sea, emphasizing the need for harmonized detection methods, ideally accompanying microplastics monitoring.


Assuntos
Petróleo , Poluentes Químicos da Água , Monitoramento Ambiental , Mar do Norte , Parafina , Plásticos , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise , Ceras
11.
Anal Bioanal Chem ; 412(30): 8283-8298, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33104827

RESUMO

Analysis of microplastics (MP) in environmental samples is an emerging field, which is performed with various methods and instruments based either on spectroscopy or thermoanalytical methods. In general, both approaches result in two different types of data sets that are either mass or particle number related. Depending on detection limits of the respective method and instrumentation the derived polymer composition trends may vary. In this study, we compare the results of hyperspectral Fourier-transform infrared (FTIR) imaging analysis and pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) analysis performed on a set of environmental samples that differ in complexity and degree of microplastic contamination. The measurements were conducted consecutively, and on exactly the same sample. First, the samples were investigated with FTIR using aluminum oxide filters; subsequently, these were crushed, transferred to glass fiber filters, in pyrolysis cups, and measured via Py-GC/MS. After a general data harmonization step, the trends in MP contamination were thoroughly investigated with regard to the respective sample set and the derived polymer compositions. While the overall trends in MP contamination were very similar, differences were observed in the polymer compositions. Furthermore, polymer masses were empirically calculated from FTIR data and compared with the Py-GC/MS results. Here, a most plausible shape-related overestimation of the calculated polymer masses was observed in samples with larger particles and increased particle numbers. Taking into account the different measurement principles of both methods, all results were examined and discussed, and future needs for harmonization of intermethodological results were identified and highlighted. Graphical abstract.

12.
PLoS One ; 15(8): e0237704, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32804963

RESUMO

Since plastics degrade very slowly, they remain in the environment on much longer timescales than most natural organic substrates and provide a novel habitat for colonization by bacterial communities. The spectrum of relationships between plastics and bacteria, however, is little understood. The first objective of this study was to examine plastics as substrates for communities of Bacteria in estuarine surface waters. We used next-generation sequencing of the 16S rRNA gene to characterize communities from plastics collected in the field, and over the course of two colonization experiments, from biofilms that developed on plastic (low-density polyethylene, high-density polyethylene, polypropylene, polycarbonate, polystyrene) and glass substrates placed in the environment. Both field sampling and colonization experiments were conducted in estuarine tributaries of the lower Chesapeake Bay. As a second objective, we concomitantly analyzed biofilms on plastic substrates to ascertain the presence and abundance of Vibrio spp. bacteria, then isolated three human pathogens, V. cholerae, V. parahaemolyticus, and V. vulnificus, and determined their antibiotic-resistant profiles. In both components of this study, we compared our results with analyses conducted on paired samples of estuarine water. This research adds to a nascent literature that suggests environmental factors govern the development of bacterial communities on plastics, more so than the characteristics of the plastic substrates themselves. In addition, this study is the first to culture three pathogenic vibrios from plastics in estuaries, reinforcing and expanding upon earlier reports of plastic pollution as a habitat for Vibrio species. The antibiotic resistance detected among the isolates, coupled with the longevity of plastics in the aqueous environment, suggests biofilms on plastics have potential to persist and serve as focal points of potential pathogens and horizontal gene transfer.


Assuntos
Biofilmes/efeitos dos fármacos , Estuários , Plásticos , Vibrio/isolamento & purificação , Poluentes da Água , Antibacterianos/farmacologia , Oceano Atlântico , DNA Bacteriano/isolamento & purificação , Farmacorresistência Bacteriana/genética , Transferência Genética Horizontal , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Vibrio/efeitos dos fármacos , Vibrio/genética
13.
Environ Sci Technol ; 54(7): 4079-4090, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32142614

RESUMO

Recent studies have shown that despite its remoteness, the Arctic region harbors some of the highest microplastic (MP) concentrations worldwide. Here, we present the results of a sampling campaign to assess the vertical distribution of MP particles (>11 µm) at five stations of the HAUSGARTEN observatory. Water column samples were taken with large volume pumps by filtering 218-561 L of seawater at two to four depth strata (near-surface, ∼300 m, ∼1000 m, and above seafloor), and sediment samples were taken with a multiple corer. MP concentrations in the water column ranged between 0 and 1287 N m-3 and in the sediment from 239 to 13 331 N kg-1. Fourier transform infrared spectroscopy (FTIR) imaging with automated data analysis showed that polyamide (39%) and ethylene-propylene-diene rubber (23%) were the most abundant polymers within the water samples and polyethylene-chlorinated (31%) in sediments. MPs ≤ 25 µm accounted for more than half of the synthetic particles in every sample. The largest MP particle recorded was in the 200 µm size class. The concentrations of fibers were not reported, as fiber detection by FTIR imaging was not available at the time of analyses. Two- and three-dimensional simulations of particle transport trajectories suggest different pathways for certain polymer types. A positive correlation between MP size composition and particulate organic carbon indicates interactions with biological processes in the water column.


Assuntos
Plásticos , Poluentes Químicos da Água , Regiões Árticas , Monitoramento Ambiental , Sedimentos Geológicos , Microplásticos , Água
14.
Environ Pollut ; 252(Pt B): 1719-1729, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31284214

RESUMO

Microplastic pollution within the marine environment is of pressing concern globally. Accordingly, spatial monitoring of microplastic concentrations, composition and size distribution may help to identify sources and entry pathways, and hence allow initiating focused mitigation. Spatial distribution patterns of microplastics were investigated in two compartments of the southern North Sea by collecting sublittoral sediment and surface water samples from 24 stations. Large microplastics (500-5000 µm) were detected visually and identified using attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy. The remaining sample was digested enzymatically, concentrated onto filters and analyzed for small microplastics (11-500 µm) using Focal Plane Array (FPA) FTIR imaging. Microplastics were detected in all samples with concentrations ranging between 2.8 and 1188.8 particles kg-1 for sediments and 0.1-245.4 particles m-3 for surface waters. On average 98% of microplastics were <100 µm in sediments and 86% in surface waters. The most prevalent polymer types in both compartments were polypropylene, acrylates/polyurethane/varnish, and polyamide. However, polymer composition differed significantly between sediment and surface water samples as well as between the Frisian Islands and the English Channel sites. These results show that microplastics are not evenly distributed, in neither location nor size, which is illuminating regarding the development of monitoring protocols.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Plásticos/análise , Poluentes Químicos da Água/análise , Mar do Norte , Polipropilenos/análise , Poliuretanos/análise , Água do Mar/química , Análise Espacial
15.
Environ Sci Technol ; 53(10): 6053-6062, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31021624

RESUMO

Rivers are major transport vectors for microplastics (MP) toward the sea. However, there is evidence that MP can temporarily or permanently be inhibited from migrating downstream by retention in sediments or ingestion by organisms. MP concentrations, compositions, and fate within the different compartments of the fluvial environment are poorly understood. Here, benthic, midstream sediments of two undammed, open-flowing stretches were investigated in the Rhine River, one of the world's busiest inland waterways. Twenty-five samples were collected at ten sites via riverbed access through a diving bell or dredging. We performed the first comprehensive analysis of riverbed sediment aliquots that avoids visual selection bias using state-of-the art automated micro-Fourier-transform infrared spectroscopy (µFTIR) imaging. MP numbers ranged between 0.26 ± 0.01 and 11.07 ± 0.6 × 103 MP kg-1 while MP particles <75 µm accounted for a mean numerical proportion ± SD of 96 ± 6%. MP concentrations decreased with sediment depth. Eighteen polymers were identified in the size range of 11-500 µm; the acrylates/polyurethane/varnish (APV) cluster was found at all sites (mean numerical proportion, 70 ± 19%), possibly indicating particulate pollution from ship antifouling paint. Overall, polymers denser than freshwater (>1 g cm-3) dominated (85 ± 18%), which contrasts the large proportions of low-density polymers previously reported in near-surface compartments of the Rhine.


Assuntos
Plásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Rios
16.
Mar Pollut Bull ; 141: 501-513, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30955761

RESUMO

Microplastics (MP) in sediments from discharge sites for wastewater and deposition sites in deep regions in an urban fjord in Norway were extracted by density separation in a Microplastic Sediment Separator with ZnCl2. Particles (>11 µm) were identified using FTIR. Twenty different polymer types were identified, at concentrations from 12,000 to 200,000 particles kg-1 dw. Over 95% of the MP were smaller than 100 µm. High deposition of small MP agreed with known areas for organic deposition. Polyurethane acrylate resins dominated the small MP while polyamide fibers dominated the larger MP. Particles >500 µm showed different maximum concentrations and spatial distribution from the smaller particles. This study is the first to report concentration ranges of identified plastic particles from a Norwegian fjord, down to sizes below the limit of visual identification. The results provides a baseline for future comparison, and point at relevant sizes for environmental risk assessments.


Assuntos
Sedimentos Geológicos/análise , Plásticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Estuários , Sedimentos Geológicos/química , Noruega , Nylons/análise , Tamanho da Partícula , Poliuretanos/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias
17.
Environ Sci Technol ; 52(22): 13279-13288, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30350953

RESUMO

Microplastics (MPs, <5 mm) have been reported as emerging environmental contaminants, but reliable data are still lacking. We compared the two most promising techniques for MP analysis, namely, Raman and Fourier transform infrared (FTIR) spectroscopy, by analyzing MPs extracted from North Sea surface waters. Microplastics >500 µm were visually sorted and manually analyzed by µ-Raman and attenuated total reflection (ATR)-FTIR spectroscopy. Microplastics ≤500 µm were concentrated on gold-coated filters and analyzed by automated single-particle exploration coupled to µ-Raman (ASPEx-µ-Raman) and FTIR imaging (reflection mode). The number of identified MPs >500 µm was slightly higher for µ-Raman (+23%) than ATR-FTIR analysis. Concerning MPs ≤500 µm, ASPEx-µ-Raman quantified two-times higher MP numbers but required a four-times higher analysis time compared to FTIR imaging. Because ASPEx-µ-Raman revealed far higher MP concentrations (38-2621 particles m-3) compared to the results of previous water studies (0-559 particles m-3), the environmental concentration of MPs ≤500 µm may have been underestimated until now. This may be attributed to the exceptional increase in concentration with decreasing MP size found in this work. Our results demonstrate the need for further research to enable time-efficient routine application of ASPEx-µ-Raman for reliable MP counting down to 1 µm.


Assuntos
Plásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Mar do Norte , Espectroscopia de Infravermelho com Transformada de Fourier
18.
Anal Bioanal Chem ; 410(21): 5131-5141, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29978249

RESUMO

The identification of microplastics becomes increasingly challenging with decreasing particle size and increasing sample heterogeneity. The analysis of microplastic samples by Fourier transform infrared (FTIR) spectroscopy is a versatile, bias-free tool to succeed at this task. In this study, we provide an adaptable reference database, which can be applied to single-particle identification as well as methods like chemical imaging based on FTIR microscopy. The large datasets generated by chemical imaging can be further investigated by automated analysis, which does, however, require a carefully designed database. The novel database design is based on the hierarchical cluster analysis of reference spectra in the spectral range from 3600 to 1250 cm-1. The hereby generated database entries were optimized for the automated analysis software with defined reference datasets. The design was further tested for its customizability with additional entries. The final reference database was extensively tested on reference datasets and environmental samples. Data quality by means of correct particle identification and depiction significantly increased compared to that of previous databases, proving the applicability of the concept and highlighting the importance of this work. Our novel database provides a reference point for data comparison with future and previous microplastic studies that are based on different databases. Graphical abstract ᅟ.

19.
Ecotoxicol Environ Saf ; 150: 86-95, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29268119

RESUMO

Previously, levonorgestrel (LNG) has been shown to be an endocrine disruptor of the amphibian thyroid system. In the present study, we investigated whether anti-thyroidal effects are a common property of progestins other than LNG. Premetamorphic Xenopus laevis tadpoles were exposed to norethisterone (NET) and dienogest DIE (each at 0.1-10nM) and LNG (10nM) until completion of metamorphosis. LNG and NET at all concentrations caused a significant developmental retardation whereas DIE did not impair time to metamorphosis. In LNG and 10nM NET exposed animals, tsh mRNA levels increased considerably later than the developmental delay occurred and thyroid histopathology showed no signs of TSH-hyperstimulation. Instead, thyroid glands from these treatments appeared inactive in producing thyroid hormones. Thyroidal transcript levels of dio2 and dio3 were increased by treatments with LNG and NET at 1nM and 10nM, whereas iyd mRNA was reduced by LNG and 10nM NET. Expression of slc5α5 was not changed by any treatment. Effects of DIE differed from those induced by LNG and NET. No developmental delay was measurable; however, tshß and dio2 mRNAs were increased in pituitary glands of tadpoles exposed to 1.0nM and 10nM DIE. Thyroid histopathology displayed no abnormalities and thyroidal mRNA expression of the genes analyzed (slc5α5, iyd, dio2, dio3) was not changed by DIE. Overall, our results provide evidence that the anti-thyroidal effects already known from LNG are also present in another progestin, namely NET, even at environmentally relevant concentrations. In conclusion we suggest that progestins do not only pose an environmental risk in terms of their impact on reproductive success of aquatic vertebrates, but also with respect to their anti-thyroidal properties affecting amphibian metamorphosis.


Assuntos
Disruptores Endócrinos/toxicidade , Larva/efeitos dos fármacos , Metamorfose Biológica/efeitos dos fármacos , Noretindrona/toxicidade , Progestinas/toxicidade , Hormônios Tireóideos/metabolismo , Animais , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Larva/metabolismo , Hipófise/efeitos dos fármacos , Glândula Tireoide/efeitos dos fármacos , Tireotropina/metabolismo , Xenopus laevis
20.
Environ Sci Technol ; 51(24): 14283-14292, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29110472

RESUMO

Micro-Fourier transform infrared (micro-FTIR) spectroscopy and Raman spectroscopy enable the reliable identification and quantification of microplastics (MPs) in the lower micron range. Since concentrations of MPs in the environment are usually low, the large sample volumes required for these techniques lead to an excess of coenriched organic or inorganic materials. While inorganic materials can be separated from MPs using density separation, the organic fraction impedes the ability to conduct reliable analyses. Hence, the purification of MPs from organic materials is crucial prior to conducting an identification via spectroscopic techniques. Strong acidic or alkaline treatments bear the danger of degrading sensitive synthetic polymers. We suggest an alternative method, which uses a series of technical grade enzymes for purifying MPs in environmental samples. A basic enzymatic purification protocol (BEPP) proved to be efficient while reducing 98.3 ± 0.1% of the sample matrix in surface water samples. After showing a high recovery rate (84.5 ± 3.3%), the BEPP was successfully applied to environmental samples from the North Sea where numbers of MPs range from 0.05 to 4.42 items m-3. Experiences with different environmental sample matrices were considered in an improved and universally applicable version of the BEPP, which is suitable for focal plane array detector (FPA)-based micro-FTIR analyses of water, wastewater, sediment, biota, and food samples.


Assuntos
Plásticos , Águas Residuárias , Poluentes Químicos da Água , Mar do Norte , Compostos Orgânicos , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...