Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 441
Filtrar
1.
FEBS Lett ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658177

RESUMO

Arabidopsis thaliana possesses two different ion-export mechanisms in the plastid inner envelope membrane. Due to a genome duplication, the transport proteins are encoded by partly redundant loci: K+-efflux antiporter1 (KEA1) and KEA2 and mechanosensitive channel of small conductance-like2 (MSL2) and MSL3. Thus far, a functional link between these two mechanisms has not been established. Here, we show that kea1msl2 loss-of-function mutants exhibit phenotypes such as slow growth, reduced photosynthesis and changes in chloroplast morphology, several of which are distinct from either single mutants and do not resemble kea1kea2 or msl2msl3 double mutants. Our data suggest that KEA1 and MSL2 function in concert to maintain plastid ion homeostasis and osmoregulation. Their interplay is critical for proper chloroplast development, organelle function, and plant performance.

2.
Nat Commun ; 14(1): 6889, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898599

RESUMO

Noble metals supported on reducible oxides, like CoOx and TiOx, exhibit superior activity in many chemical reactions, but the origin of the increased activity is not well understood. To answer this question we studied thin films of CoOx supported on an Au(111) single crystal surface as a model for the CO oxidation reaction. We show that three reaction regimes exist in response to chemical and topographic restructuring of the CoOx catalyst as a function of reactant gas phase CO/O2 stoichiometry and temperature. Under oxygen-lean conditions and moderate temperatures (≤150 °C), partially oxidized films (CoOx<1) containing Co0 were found to be efficient catalysts. In contrast, stoichiometric CoO films containing only Co2+ form carbonates in the presence of CO that poison the reaction below 300 °C. Under oxygen-rich conditions a more oxidized catalyst phase (CoOx>1) forms containing Co3+ species that are effective in a wide temperature range. Resonant photoemission spectroscopy (ResPES) revealed the unique role of Co3+ sites in catalyzing the CO oxidation. Density function theory (DFT) calculations provided deeper insights into the pathway and free energy barriers for the reactions on these oxide phases. These findings in this work highlight the versatility of catalysts and their evolution to form different active phases, both topological and chemically, in response to reaction conditions exposing a new paradigm in the catalyst structure during operation.

3.
J Phys Chem Lett ; 14(33): 7354-7360, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37561999

RESUMO

This study investigates the oxidation state of ceria thin films' surface and subsurface under 100 mTorr hydrogen using ambient pressure X-ray photoelectron spectroscopy. We examine the influence of the initial oxidation state and sample temperature (25-450 °C) on the interaction with hydrogen. Our findings reveal that the oxidation state during hydrogen interaction involves a complex interplay between oxidizing hydride formation, reducing thermal reduction, and reducing formation of hydroxyls followed by water desorption. In all studied conditions, the subsurface exhibits a higher degree of oxidation compared to the surface, with a more subtle difference for the reduced sample. The reduced samples are significantly hydroxylated and covered with molecular water at 25 °C. We also investigate the impact of water vapor impurities in hydrogen. We find that although 1 × 10-6 Torr water vapor oxidizes ceria, it is probably not the primary driver behind the oxidation of reduced ceria in the presence of hydrogen.

4.
ACS Catal ; 13(11): 7488-7498, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37288096

RESUMO

In the search for rational design strategies for oxygen evolution reaction (OER) catalysts, linking the catalyst structure to activity and stability is key. However, highly active catalysts such as IrOx and RuOx undergo structural changes under OER conditions, and hence, structure-activity-stability relationships need to take into account the operando structure of the catalyst. Under the highly anodic conditions of the oxygen evolution reaction (OER), electrocatalysts are often converted into an active form. Here, we studied this activation for amorphous and crystalline ruthenium oxide using X-ray absorption spectroscopy (XAS) and electrochemical scanning electron microscopy (EC-SEM). We tracked the evolution of surface oxygen species in ruthenium oxides while in parallel mapping the oxidation state of the Ru atoms to draw a complete picture of the oxidation events that lead to the OER active structure. Our data show that a large fraction of the OH groups in the oxide are deprotonated under OER conditions, leading to a highly oxidized active material. The oxidation is centered not only on the Ru atoms but also on the oxygen lattice. This oxygen lattice activation is particularly strong for amorphous RuOx. We propose that this property is key for the high activity and low stability observed for amorphous ruthenium oxide.

5.
ACS Nano ; 17(6): 5329-5339, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36913300

RESUMO

High-entropy materials are an emerging pathway in the development of high-activity (electro)catalysts because of the inherent tunability and coexistence of multiple potential active sites, which may lead to earth-abundant catalyst materials for energy-efficient electrochemical energy storage. In this report, we identify how the multication composition in high-entropy perovskite oxides (HEO) contributes to high catalytic activity for the oxygen evolution reaction (OER), i.e., the key kinetically limiting half-reaction in several electrochemical energy conversion technologies, including green hydrogen generation. We compare the activity of the (001) facet of LaCr0.2Mn0.2Fe0.2Co0.2Ni0.2O3-δ with the parent compounds (single B-site in the ABO3 perovskite). While the single B-site perovskites roughly follow the expected volcano-type activity trends, the HEO clearly outperforms all of its parent compounds with 17 to 680 times higher currents at a fixed overpotential. As all samples were grown as an epitaxial layer, our results indicate an intrinsic composition-function relationship, avoiding the effects of complex geometries or unknown surface composition. In-depth X-ray photoemission studies reveal a synergistic effect of simultaneous oxidation and reduction of different transition metal cations during the adsorption of reaction intermediates. The surprisingly high OER activity demonstrates that HEOs are a highly attractive, earth-abundant material class for high-activity OER electrocatalysts, possibly allowing the activity to be fine-tuned beyond the scaling limits of mono- or bimetallic oxides.

6.
Lung Cancer ; 175: 57-59, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36455397

RESUMO

INTRODUCTION: Patients receiving stereotactic body radiotherapy (SBRT) for early-stage non-small cell lung cancer (NSCLC) are typically inoperable, in concordance with guidelines that advocate surgical resection as preferred treatment for operable patients. This differential treatment allocation complicates retrospective comparisons of surgery with SBRT by introducing the potential for confounding by operability. METHODS: PubMed was queried for manuscripts reporting primary data from retrospective comparisons of overall survival (OS) between patients undergoing surgery versus SBRT for early-stage NSCLC. Each manuscript was categorized for two outcomes: (1) whether treatment allocation was based on a determination of patient operability, and (2) whether a direct OS comparison between operable SBRT patients and surgically treated patients was included. Associations with variables of interest were measured with statistical significance prespecified at p < 0.10. RESULTS: From 3,072 manuscripts identified in our query, sixty-one analyses met screening criteria. Twenty-one (34 %) reported operability status influencing treatment allocation. These were more likely to be published in journals with a surgical focus (52 vs 20 %) and impact factor < 5 (81 vs 58 %), and to contain cohorts from institutional datasets (81 vs 55 %), and to have a radiation oncologist as first (43 vs 25 %) or senior (43 vs 28 %) author. Seven (11 %) manuscripts featured a direct OS comparison between SBRT and surgery. CONCLUSION: Nearly-two-thirds of peer-reviewed retrospective studies that have compared OS between surgery and SBRT for early-stage NSCLC lack information on patient operability status, and nearly 90% lack a direct comparison between operable SBRT patients and those receiving surgery.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirurgia , Estudos Retrospectivos , Radiocirurgia/efeitos adversos , Estadiamento de Neoplasias
7.
Sci Rep ; 12(1): 16133, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167702

RESUMO

The enamel can be protected by applying orthodontic sealants at the bracket base to avoid the development of white spot lesions caused by inadequate oral hygiene. The aim of this study was to investigate the mechanical resistance of five commonly used orthodontic sealants against brushing in comparison to a positive group. Hydroxyapatite discs were bonded with a metal bracket and a piece of arch-wire was ligated in order to simulate a daily clinical situation (n = 48). Samples were divided into 6 groups of respectively 8 specimens. Sealants were applied around the bracket base according to manufacturer's instructions. Following sealants were used: Group 1: Pro Seal (Reliance Orthodontic Products, Itasca, Illinois, USA); 2: Light Bond (Reliance Orthodontic Products, Itasca, Illinois, USA); 3: ClinproXT Varnish (3M ESPE, Seefeld, Germany); 4: ProtectoCaF2 Nano (BonaDent GmbH, Frankfurt am Main, Germany); 5: Fluor Protector and 6: Tetric EvoFlow (both Ivoclar Vivadent AG, Schaan Liechtenstein). Tooth brushing were simulated for 6 weeks and 6 months with an electric toothbrush. The sealant thickness was measured by mechanical (MP) and optical profilometry (OP) at baseline, after 6 weeks and after 6 months of brushing. Statistical analysis was performed according to two mixed linear models and post hoc Tukey-Kramer comparisons. The significance level was set at 5% (α ≤ 0.05). Pro Seal (MP: 9%; OP: 22%) and Light Bond (MP: 19%; OP: 16%) showed the lowest changes in sealant thickness after 6 months of simulated brushing. ClinproXT Varnish and Tetric EvoFlow recorded no statistically significant results (p > 0.05). The fluoride varnishes ProtectoCaF2 Nano and Fluor Protector could not be conclusively evaluated since the thickness of the sealants could not be determined at baseline. The results of both evaluation methods MP and OP are in good agreement. Pro Seal and Light Bond were resistant against tooth brushing and were able to adequately keep the bracket environment sealed even after 6 months. The two different measuring methods, MP and OP, provide a precise impression of the changes in the surface.


Assuntos
Fluoretos Tópicos , Braquetes Ortodônticos , Fluoretos , Alemanha , Hidroxiapatitas , Escovação Dentária
8.
Faraday Discuss ; 236(0): 103-125, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35485389

RESUMO

Photoelectron spectroscopy offers detailed information about the electronic structure and chemical composition of surfaces, owing to the short distance that the photoelectrons can escape from a dense medium. Unfortunately, photoelectron based spectroscopies are not directly compatible with the liquids required to investigate electrochemical processes, especially in the soft X-ray regime. To overcome this issue, different approaches based on photoelectron spectroscopy have been developed in our group over the last few years. The performance and the degree of information provided by these approaches are compared with those of the well established bulk sensitive spectroscopic approach of total fluorescence yield detection, where the surface information gained from this approach is enhanced using samples with large surface to bulk ratios. The operation of these approaches is exemplified and compared using the oxygen evolution reaction on IrOx catalysts. We found that all the approaches, if properly applied, provide similar information about surface oxygen speciation. However, using resonant photoemission spectroscopy, we were able to prove that speciation is more involved and complex than previously thought during the oxygen evolution reaction on IrOx based electrocatalysts. We found that the electrified solid-liquid interface is composed of different oxygen species, where the terminal oxygen atoms on iridium are the active species, yielding the formation of peroxo species and, finally, dioxygen as the reaction product. Thus, the oxygen-oxygen bond formation is dominated by peroxo species formation along the reaction pathway. Furthermore, the methodologies discussed here open up opportunities to investigate electrified solid-liquid interfaces in a multitude of electrochemical processes with unprecedented speciation capabilities, which are not accessible by one-dimensional X-ray spectroscopies.

9.
J Am Chem Soc ; 143(32): 12524-12534, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34355571

RESUMO

Iridium and ruthenium and their oxides/hydroxides are the best candidates for the oxygen evolution reaction under harsh acidic conditions owing to the low overpotentials observed for Ru- and Ir-based anodes and the high corrosion resistance of Ir-oxides. Herein, by means of cutting edge operando surface and bulk sensitive X-ray spectroscopy techniques, specifically designed electrode nanofabrication and ab initio DFT calculations, we were able to reveal the electronic structure of the active IrOx centers (i.e., oxidation state) during electrocatalytic oxidation of water in the surface and bulk of high-performance Ir-based catalysts. We found the oxygen evolution reaction is controlled by the formation of empty Ir 5d states in the surface ascribed to the formation of formally IrV species leading to the appearance of electron-deficient oxygen species bound to single iridium atoms (µ1-O and µ1-OH) that are responsible for water activation and oxidation. Oxygen bound to three iridium centers (µ3-O) remains the dominant species in the bulk but do not participate directly in the electrocatalytic reaction, suggesting bulk oxidation is limited. In addition a high coverage of a µ1-OO (peroxo) species during the OER is excluded. Moreover, we provide the first photoelectron spectroscopic evidence in bulk electrolyte that the higher surface-to-bulk ratio in thinner electrodes enhances the material usage involving the precipitation of a significant part of the electrode surface and near-surface active species.

10.
Plant Biol (Stuttg) ; 23(5): 749-759, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33899992

RESUMO

Population genetic and ecological data may help to control invasive plants, which are considered a major threat to natural habitats. In contrast to expected bottleneck events, genetic diversity of such invasive populations may be high due to extensive propagule pressure or admixture. The ecological impact of invasive species has been broadly evaluated in the field; however, long-term studies on the fate of invasive plants are scarce. We analysed genetic diversity and structure in invasive Spiraea tomentosa populations in eastern Germany and western Poland using Amplified Fragment Length Polymorphism. Potential hybridization between co-occurring diploid Sp. tomentosa and tetraploid Sp. douglasii was investigated using Flow Cytometry. The genetic analyses were complemented by data from a 13-year vegetation study in an area invaded by these Spiraea species. We found no evidence for hybridization between Spiraea species. In populations of Sp. tomentosa both genetic diversity (He = 0.26) and genetic structure (ΦPT = 0.27) were high and comparable to other outcrossing woody plants. Low levels of clonality, presence of seedlings and new patches in sites that had been colonized over the last 13 years imply that populations spread via sexual reproduction. In all habitat types, native species diversity declined following Sp. tomentosa invasion. However, detailed aerial mapping of a forest reserve with ongoing succession revealed that Spiraea spp. populations have declined over a 10-year period. Despite its potential for dispersal and negative effects on native plant communities, invasive Spiraea populations may be controlled by increasing canopy cover in forest habitats.


Assuntos
Rosaceae , Spiraea , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Ecossistema , Florestas , Variação Genética , Spiraea/genética
11.
ACS Appl Mater Interfaces ; 13(3): 3748-3761, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33442973

RESUMO

Adoption of proton exchange membrane (PEM) water electrolysis technology on a global level will demand a significant reduction of today's iridium loadings in the anode catalyst layers of PEM electrolyzers. However, new catalyst and electrode designs with reduced Ir content have been suffering from limited stability caused by (electro)chemical degradation. This has remained a serious impediment to a wider commercialization of larger-scale PEM electrolysis technology. In this combined DFT computational and experimental study, we investigate a novel family of iridium-niobium mixed metal oxide thin-film catalysts for the oxygen evolution reaction (OER), some of which exhibit greatly enhanced stability, such as minimized voltage degradation and reduced Ir dissolution with respect to the industry benchmark IrOx catalyst. More specifically, we report an unusually durable IrNbOx electrocatalyst with improved catalytic performance compared to an IrOx benchmark catalyst prepared in-house and a commercial benchmark catalyst (Umicore Elyst Ir75 0480) at significantly reduced Ir catalyst cost. Catalyst stability was assessed by conventional and newly developed accelerated degradation tests, and the mechanistic origins were analyzed and are discussed. To achieve this, the IrNbOx mixed metal oxide catalyst and its water splitting kinetics were investigated by a host of techniques such as synchrotron-based NEXAFS analysis and XPS, electrochemistry, and ab initio DFT calculations as well as STEM-EDX cross-sectional analysis. These analyses highlight a number of important structural differences to other recently reported bimetallic OER catalysts in the literature. On the methodological side, we introduce, validate, and utilize a new, nondestructive XRF-based catalyst stability monitoring technique that will benefit future catalyst development. Furthermore, the present study identifies new specific catalysts and experimental strategies for stepwise reducing the Ir demand of PEM water electrolyzers on their long way toward adoption at a larger scale.

13.
Nature ; 587(7834): 408-413, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33208960

RESUMO

The oxygen evolution reaction has an important role in many alternative-energy schemes because it supplies the protons and electrons required for converting renewable electricity into chemical fuels1-3. Electrocatalysts accelerate the reaction by facilitating the required electron transfer4, as well as the formation and rupture of chemical bonds5. This involvement in fundamentally different processes results in complex electrochemical kinetics that can be challenging to understand and control, and that typically depends exponentially on overpotential1,2,6,7. Such behaviour emerges when the applied bias drives the reaction in line with the phenomenological Butler-Volmer theory, which focuses on electron transfer8, enabling the use of Tafel analysis to gain mechanistic insight under quasi-equilibrium9-11 or steady-state assumptions12. However, the charging of catalyst surfaces under bias also affects bond formation and rupture13-15, the effect of which on the electrocatalytic rate is not accounted for by the phenomenological Tafel analysis8 and is often unknown. Here we report pulse voltammetry and operando X-ray absorption spectroscopy measurements on iridium oxide to show that the applied bias does not act directly on the reaction coordinate, but affects the electrocatalytically generated current through charge accumulation in the catalyst. We find that the activation free energy decreases linearly with the amount of oxidative charge stored, and show that this relationship underlies electrocatalytic performance and can be evaluated using measurement and computation. We anticipate that these findings and our methodology will help to better understand other electrocatalytic materials and design systems with improved performance.

14.
ACS Appl Mater Interfaces ; 12(33): 37680-37692, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32702231

RESUMO

Electrochemistry is a promising building block for the global transition to a sustainable energy market. Particularly the electroreduction of CO2 and the electrolysis of water might be strategic elements for chemical energy conversion. The reactions of interest are inner-sphere reactions, which occur on the surface of the electrode, and the biased interface between the electrode surface and the electrolyte is of central importance to the reactivity of an electrode. However, a potential-dependent observation of this buried interface is challenging, which slows the development of catalyst materials. Here we describe a sample architecture using a graphene blanket that allows surface sensitive studies of biased electrochemical interfaces. At the examples of near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) and environmental scanning electron microscopy (ESEM), we show that the combination of a graphene blanket and a permeable membrane leads to the formation of a liquid thin film between them. This liquid thin film is stable against a water partial pressure below 1 mbar. These properties of the sample assembly extend the study of solid-liquid interfaces to highly surface sensitive techniques, such as electron spectroscopy/microscopy. In fact, photoelectrons with an effective attenuation length of only 10 Å can be detected, which is close to the absolute minimum possible in aqueous solutions. The in-situ cells and the sample preparation necessary to employ our method are comparatively simple. Transferring this approach to other surface sensitive measurement techniques should therefore be straightforward. We see our approach as a starting point for more studies on electrochemical interfaces and surface processes under applied potential. Such studies would be of high value for the rational design of electrocatalysts.

15.
ACS Energy Lett ; 5(6): 2106-2111, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32551364

RESUMO

The variation in the morphology and electronic structure of copper during the electroreduction of CO2 into valuable hydrocarbons and alcohols was revealed by combining in situ surface- and bulk-sensitive X-ray spectroscopies with electrochemical scanning electron microscopy. These experiments proved that the electrified interface surface and near-surface are dominated by reduced copper. The selectivity to the formation of the key C-C bond is enhanced at higher cathodic potentials as a consequence of increased copper metallicity. In addition, the reduction of the copper oxide electrode and oxygen loss in the lattice reconstructs the electrode to yield a rougher surface with more uncoordinated sites, which controls the dissociation barrier of water and CO2. Thus, according to these results, copper oxide species can only be stabilized kinetically under CO2 reduction reaction conditions.

16.
Materials (Basel) ; 13(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560385

RESUMO

Common methods to produce supported catalysts include impregnation, precipitation, and thermal spray techniques. Supported electrocatalysts produced by a novel method for thermal spray deposition were investigated with respect to their structural properties, elemental composition, and electrochemical performance. This was done using electron microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry. Various shapes and sizes of catalyst particles were found. The materials exhibit different activity towards oxidation and reduction of Fe. The results show that this preparation method enables the selection of particle coverage as well as size and shape of the catalyst material. Due to the great variability of support and catalyst materials accessible with this technique, this approach is a useful extension to other preparation methods for electrocatalysts.

17.
Chem Sci ; 10(39): 9130-9139, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31827755

RESUMO

Unsaturated silicon clusters with only partial substitution, and thus, "naked" Si atoms are well studied species as they are proposed intermediates in gas-phase deposition processes. Although a remarkable number of stable molecular clusters has been reported, they are typically still obtained by multi-step syntheses. Herein we introduce a newly developed synthetic approach which led to the formation of the anionic species {Si(TMS)3}3Si9 - (1a) and {Si(TMS)3}2Si9 2- (1b), and an extension of this synthetic protocol resulted in the first covalent attachment of ligands through metal atoms to these clusters, (SnCy3)3Si9 - (2a) and (SnCy3)2Si9 2- (2b). The influence of the substituents on the electron localization in the central Si9 unit is analyzed by means of intrinsic bond orbital (IBO) analysis and partial atomic charge distribution. The IBO analyses reveal a new type of delocalization including 5-center-6-electron besides 3-center-2-electron bonds. The Raman spectra of 1b and 2b allow an assignment of the Si-Si intra-cluster vibrations by comparison to calculated (DFT-PBE0) spectra. The anions are formed in a one-step synthesis from binary K12Si17 which can easily be obtained by fusing the elements K and Si. The anions are characterized by ESI mass spectrometry and comprehensive NMR studies (1H, 13C, 29Si, 119Sn). Attempts to crystallize 1a and 2a as their (K-222crypt)+ salts yielded after the loss of one of the substituents single crystals containing 1b and 2b. The single crystal X-ray structure analyses reveal the presence of anionic siliconoids with surfaces of seven unsubstituted silicon atoms.

18.
Biomed Tech (Berl) ; 64(s1): 47-52, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753139
19.
Inorg Chem ; 58(5): 3256-3264, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30741546

RESUMO

The coordination of Ge9 Zintl clusters at (carbene)CuI moieties is explored, and the complexes [(CAAC)Cu]2[η3-Ge9{Si(TMS)3}2] (1), (CAAC)Cu[η3-Ge9{Si(TMS)3}3] (2), and (MIC)Cu[η3-Ge9{Si(TMS)3}3] (3) are compared with their known N-heterocyclic carbene (NHC) derivatives (A and B), where CAAC = cyclic (alkyl)amino carbene, MIC = mesoionic carbene, and TMS = trimethylsilane. In analogy to the NHC derivatives, the synthesis of 1-3 proceeds by single-step reactions of (CAAC)CuCl or (MIC)CuCl with the [Ge9R2]2- and [Ge9R3]- [R = Si(TMS)3] cluster ligands, respectively, and yields complexes of (carbene)CuI (carbene = CAAC, MIC) moieties exhibiting η3-coordination modes of the Ge9 deltahedron to the Cu atom. In 1, [Ge9R2]2- acts as a η3-bridging unit for two (CAAC)CuI moieties, and 2 and 3 feature single (carbene)CuI (CAAC and MIC) fragments η3-connected to [Ge9R3]- units. Analysis of the bond lengths in comparison with known examples shows a bond expansion within the coordinated Ge3 triangular faces for all (carbene)CuIGe9 complexes (carbene = NHC, MIC, CAAC). All compounds are characterized by single-crystal X-ray diffractometry, NMR spectroscopy [1H, 13C{1H}, and 29Si{1H}], electrospray ionization mass spectometry, elemental analysis (C, H, and N), and for the first time also by IR and Raman investigations (for 2 and 3). The new complexes add to the known NHC derivatives and extend the exploration of Ge9 clusters with carbene ligands at CuI atoms.

20.
Patient Educ Couns ; 102(1): 43-52, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30224275

RESUMO

OBJECTIVE: The impact of two types of oncologists' emotion-oriented communication on participants' recall of medical information was investigated, and the potential mediation by a reduction in emotional stress. Additionally, moderation effects by personal characteristics were explored. METHODS: An oncologist's communication in response to a patient's emotional expressions was manipulated during a videotaped, scripted bad-news consultation. Three conditions were created: 1) standard communication, 2) emotion-oriented silence, and 3) emotion-oriented speech. Participants (N = 217) were randomly allocated to one of the three conditions. Measurements included information recall (free recall and recognition), emotional stress (self-reported and physiological), and personal characteristics. RESULTS: Emotion-oriented silence (p = .002) and speech (p = .019) enhanced information recognition compared to standard communication. No differences in free recall were found. Emotional stress did not mediate these relations. Poorer functional health literacy predicted poorer recognition, but this was counteracted by emotion-oriented communication. CONCLUSIONS: By means of acknowledging, exploring, empathic and supportive statements, and attentive silence, the oncologist's communication resulted in better information recognition. How oncologists' communication impacts patients' information recall warrants further investigation, as this could not be explained by reducing emotional stress. PRACTICE IMPLICATIONS: These insights will help educators to validate the relevance of emotion-oriented strategies, and encourage oncologists to adopt them.


Assuntos
Comunicação , Emoções , Rememoração Mental , Neoplasias/psicologia , Oncologistas/psicologia , Relações Médico-Paciente , Estresse Psicológico/psicologia , Adolescente , Adulto , Atitude do Pessoal de Saúde , Educação de Graduação em Medicina , Empatia , Feminino , Humanos , Masculino , Estudo de Prova de Conceito , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...