Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JAMA Netw Open ; 7(9): e2432143, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39250153

RESUMO

Importance: Increasing numbers of unaffected individuals could benefit from genetic evaluation for inherited cancer susceptibility. Automated conversational agents (ie, chatbots) are being developed for cancer genetics contexts; however, randomized comparisons with standard of care (SOC) are needed. Objective: To examine whether chatbot and SOC approaches are equivalent in completion of pretest cancer genetic services and genetic testing. Design, Setting, and Participants: This equivalence trial (Broadening the Reach, Impact, and Delivery of Genetic Services [BRIDGE] randomized clinical trial) was conducted between August 15, 2020, and August 31, 2023, at 2 US health care systems (University of Utah Health and NYU Langone Health). Participants were aged 25 to 60 years, had had a primary care visit in the previous 3 years, were eligible for cancer genetic evaluation, were English or Spanish speaking, had no prior cancer diagnosis other than nonmelanoma skin cancer, had no prior cancer genetic counseling or testing, and had an electronic patient portal account. Intervention: Participants were randomized 1:1 at the patient level to the study groups at each site. In the chatbot intervention group, patients were invited in a patient portal outreach message to complete a pretest genetics education chat. In the enhanced SOC control group, patients were invited to complete an SOC pretest appointment with a certified genetic counselor. Main Outcomes and Measures: Primary outcomes were completion of pretest cancer genetic services (ie, pretest genetics education chat or pretest genetic counseling appointment) and completion of genetic testing. Equivalence hypothesis testing was used to compare the study groups. Results: This study included 3073 patients (1554 in the chatbot group and 1519 in the enhanced SOC control group). Their mean (SD) age at outreach was 43.8 (9.9) years, and most (2233 of 3063 [72.9%]) were women. A total of 204 patients (7.3%) were Black, 317 (11.4%) were Latinx, and 2094 (75.0%) were White. The estimated percentage point difference for completion of pretest cancer genetic services between groups was 2.0 (95% CI, -1.1 to 5.0). The estimated percentage point difference for completion of genetic testing was -1.3 (95% CI, -3.7 to 1.1). Analyses suggested equivalence in the primary outcomes. Conclusions and Relevance: The findings of the BRIDGE equivalence trial support the use of chatbot approaches to offer cancer genetic services. Chatbot tools can be a key component of sustainable and scalable population health management strategies to enhance access to cancer genetic services. Trial Registration: ClinicalTrials.gov Identifier: NCT03985852.


Assuntos
Neoplasias , Padrão de Cuidado , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Adulto , Neoplasias/genética , Neoplasias/terapia , Serviços em Genética/estatística & dados numéricos , Aconselhamento Genético/métodos , Testes Genéticos/métodos , Testes Genéticos/estatística & dados numéricos , Predisposição Genética para Doença
2.
JAMA Netw Open ; 5(10): e2234574, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36194411

RESUMO

Importance: Clinical decision support (CDS) algorithms are increasingly being implemented in health care systems to identify patients for specialty care. However, systematic differences in missingness of electronic health record (EHR) data may lead to disparities in identification by CDS algorithms. Objective: To examine the availability and comprehensiveness of cancer family history information (FHI) in patients' EHRs by sex, race, Hispanic or Latino ethnicity, and language preference in 2 large health care systems in 2021. Design, Setting, and Participants: This retrospective EHR quality improvement study used EHR data from 2 health care systems: University of Utah Health (UHealth) and NYU Langone Health (NYULH). Participants included patients aged 25 to 60 years who had a primary care appointment in the previous 3 years. Data were collected or abstracted from the EHR from December 10, 2020, to October 31, 2021, and analyzed from June 15 to October 31, 2021. Exposures: Prior collection of cancer FHI in primary care settings. Main Outcomes and Measures: Availability was defined as having any FHI and any cancer FHI in the EHR and was examined at the patient level. Comprehensiveness was defined as whether a cancer family history observation in the EHR specified the type of cancer diagnosed in a family member, the relationship of the family member to the patient, and the age at onset for the family member and was examined at the observation level. Results: Among 144 484 patients in the UHealth system, 53.6% were women; 74.4% were non-Hispanic or non-Latino and 67.6% were White; and 83.0% had an English language preference. Among 377 621 patients in the NYULH system, 55.3% were women; 63.2% were non-Hispanic or non-Latino, and 55.3% were White; and 89.9% had an English language preference. Patients from historically medically undeserved groups-specifically, Black vs White patients (UHealth: 17.3% [95% CI, 16.1%-18.6%] vs 42.8% [95% CI, 42.5%-43.1%]; NYULH: 24.4% [95% CI, 24.0%-24.8%] vs 33.8% [95% CI, 33.6%-34.0%]), Hispanic or Latino vs non-Hispanic or non-Latino patients (UHealth: 27.2% [95% CI, 26.5%-27.8%] vs 40.2% [95% CI, 39.9%-40.5%]; NYULH: 24.4% [95% CI, 24.1%-24.7%] vs 31.6% [95% CI, 31.4%-31.8%]), Spanish-speaking vs English-speaking patients (UHealth: 18.4% [95% CI, 17.2%-19.1%] vs 40.0% [95% CI, 39.7%-40.3%]; NYULH: 15.1% [95% CI, 14.6%-15.6%] vs 31.1% [95% CI, 30.9%-31.2%), and men vs women (UHealth: 30.8% [95% CI, 30.4%-31.2%] vs 43.0% [95% CI, 42.6%-43.3%]; NYULH: 23.1% [95% CI, 22.9%-23.3%] vs 34.9% [95% CI, 34.7%-35.1%])-had significantly lower availability and comprehensiveness of cancer FHI (P < .001). Conclusions and Relevance: These findings suggest that systematic differences in the availability and comprehensiveness of FHI in the EHR may introduce informative presence bias as inputs to CDS algorithms. The observed differences may also exacerbate disparities for medically underserved groups. System-, clinician-, and patient-level efforts are needed to improve the collection of FHI.


Assuntos
Registros Eletrônicos de Saúde , Neoplasias , Atenção à Saúde , Feminino , Hispânico ou Latino , Humanos , Idioma , Masculino , Estudos Retrospectivos
3.
J Med Internet Res ; 23(11): e29447, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34792472

RESUMO

BACKGROUND: Cancer genetic testing to assess an individual's cancer risk and to enable genomics-informed cancer treatment has grown exponentially in the past decade. Because of this continued growth and a shortage of health care workers, there is a need for automated strategies that provide high-quality genetics services to patients to reduce the clinical demand for genetics providers. Conversational agents have shown promise in managing mental health, pain, and other chronic conditions and are increasingly being used in cancer genetic services. However, research on how patients interact with these agents to satisfy their information needs is limited. OBJECTIVE: Our primary aim is to assess user interactions with a conversational agent for pretest genetics education. METHODS: We conducted a feasibility study of user interactions with a conversational agent who delivers pretest genetics education to primary care patients without cancer who are eligible for cancer genetic evaluation. The conversational agent provided scripted content similar to that delivered in a pretest genetic counseling visit for cancer genetic testing. Outside of a core set of information delivered to all patients, users were able to navigate within the chat to request additional content in their areas of interest. An artificial intelligence-based preprogrammed library was also established to allow users to ask open-ended questions to the conversational agent. Transcripts of the interactions were recorded. Here, we describe the information selected, time spent to complete the chat, and use of the open-ended question feature. Descriptive statistics were used for quantitative measures, and thematic analyses were used for qualitative responses. RESULTS: We invited 103 patients to participate, of which 88.3% (91/103) were offered access to the conversational agent, 39% (36/91) started the chat, and 32% (30/91) completed the chat. Most users who completed the chat indicated that they wanted to continue with genetic testing (21/30, 70%), few were unsure (9/30, 30%), and no patient declined to move forward with testing. Those who decided to test spent an average of 10 (SD 2.57) minutes on the chat, selected an average of 1.87 (SD 1.2) additional pieces of information, and generally did not ask open-ended questions. Those who were unsure spent 4 more minutes on average (mean 14.1, SD 7.41; P=.03) on the chat, selected an average of 3.67 (SD 2.9) additional pieces of information, and asked at least one open-ended question. CONCLUSIONS: The pretest chat provided enough information for most patients to decide on cancer genetic testing, as indicated by the small number of open-ended questions. A subset of participants were still unsure about receiving genetic testing and may require additional education or interpersonal support before making a testing decision. Conversational agents have the potential to become a scalable alternative for pretest genetics education, reducing the clinical demand on genetics providers.


Assuntos
Inteligência Artificial , Comunicação , Doença Crônica , Aconselhamento Genético , Humanos , Saúde Mental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA