Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 973543, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203612

RESUMO

NFKB1 haploinsufficiengcy was first described in 2015 in three families with common variable immunodeficiency (CVID), presenting heterogeneously with symptoms of increased infectious susceptibility, skin lesions, malignant lymphoproliferation and autoimmunity. The described mutations all led to a rapid degradation of the mutant protein, resulting in a p50 haploinsufficient state. Since then, more than 50 other mutations have been reported, located throughout different domains of NFKB1 with the majority situated in the N-terminal Rel homology domain (RHD). The clinical spectrum has also expanded with possible disease manifestations in almost any organ system. In silico prediction tools are often used to estimate the pathogenicity of NFKB1 variants but to prove causality between disease and genetic findings, further downstream functional validation is required. In this report, we studied 2 families with CVID and two novel variants in NFKB1 (c.1638-2A>G and c.787G>C). Both mutations affected mRNA and/or protein expression of NFKB1 and resulted in excessive NLRP3 inflammasome activation in patient macrophages and upregulated interferon stimulated gene expression. Protein-protein interaction analysis demonstrated a loss of interaction with NFKB1 interaction partners for the p.V263L mutation. In conclusion, we proved pathogenicity of two novel variants in NFKB1 in two families with CVID characterized by variable and incomplete penetrance.


Assuntos
Imunodeficiência de Variável Comum , Imunodeficiência de Variável Comum/genética , Humanos , Inflamassomos , Interferons/genética , Proteínas Mutantes/genética , Mutação , Subunidade p50 de NF-kappa B/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fenótipo , RNA Mensageiro
2.
J Clin Immunol ; 42(8): 1638-1652, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35829840

RESUMO

PURPOSE: Mendelian susceptibility to mycobacterial disease (MSMD) is caused by inborn errors of IFN-γ immunity. The most frequent genetic defects are found in IL12 or a subunit of its receptor. IL23R deficiency in MSMD has only been reported once, in two pediatric patients from the same kindred with isolated disseminated Bacille Calmette-Guérin disease. We evaluated the impact of a homozygous stop mutation in IL23R (R381X), identified by whole exome sequencing, in an adult patient with disseminated non-tuberculous mycobacterial disease. METHODS: We performed functional validation of the R381X mutation by evaluating IL23R expression and IL-23 signaling (STAT3 phosphorylation, IFN-γ production) in primary cells (PBMCs, EBV-B cells) and cell lines (HeLa) with or without back-complementation of wild-type IL23R. RESULTS: We report on a 48-year-old male with disseminated non-tuberculous mycobacterial disease. We identified and characterized a homozygous loss-of-function stop mutation underlying IL23R deficiency, resulting in near absent expression of membrane bound IL23R. IL23R deficiency was characterized by impaired IL-23-mediated IFN-γ secretion in CD4+, CD8+ T, and mucosal-associated invariant T (MAIT) cells, and low frequencies of circulating Th17 (CD3+CD45RA-CCR4+CXCR3-RORγT+), Th1* (CD45RA-CCR4-CXCR3+RORγT+), and MAIT (CD3+CD8+Vα7.2+CD161+) cells. Although the patient did not have a history of recurrent fungal infections, impaired Th17 differentiation and blunted IL-23-mediated IL-17 secretion in PBMCs were observed. CONCLUSION: We demonstrate that impaired IL-23 immunity caused by a homozygous R381X mutation in IL23R underlies MSMD, corroborating earlier findings with a homozygous p.C115Y IL23R mutation. Our report further supports a model of redundant contribution of IL-23- to IL-17-mediated anti-fungal immunity.1.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Infecções por Mycobacterium , Masculino , Adulto , Humanos , Criança , Pessoa de Meia-Idade , Interleucina-17/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Infecções por Mycobacterium/etiologia , Infecções por Mycobacterium não Tuberculosas/genética , Infecções por Mycobacterium não Tuberculosas/complicações , Mutação/genética , Interleucina-23 , Predisposição Genética para Doença , Receptores de Interleucina/genética
3.
Exp Cell Res ; 368(2): 225-235, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29730163

RESUMO

Mutations in MECP2 gene have been identified in more than 95% of patients with classic Rett syndrome, one of the most common neurodevelopmental disorders in females. Taking advantage of the breakthrough technology of genetic reprogramming, we investigated transcriptome changes in neurons differentiated from induced Pluripotent Stem Cells (iPSCs) derived from patients with different mutations. Profiling by RNA-seq in terminally differentiated neurons revealed a prominent GABAergic circuit disruption along with a perturbation of cytoskeleton dynamics. In particular, in mutated neurons we identified a significant decrease of acetylated α-tubulin which can be reverted by treatment with selective inhibitors of HDAC6, the main α-tubulin deacetylase. These findings contribute to shed light on Rett pathogenic mechanisms and provide hints for the treatment of Rett-associated epileptic behavior as well as for the definition of new therapeutic strategies for Rett syndrome.


Assuntos
Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Desacetilase 6 de Histona/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Síndrome de Rett/metabolismo , Síndrome de Rett/fisiopatologia , Tubulina (Proteína)/metabolismo , Acetilação , Diferenciação Celular/fisiologia , Feminino , Humanos , Masculino
4.
Glycobiology ; 28(5): 295-305, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29315387

RESUMO

Over 200 glycosyltransferases are involved in the orchestration of the biosynthesis of the human glycome, which is comprised of all glycan structures found on different glycoconjugates in cells. The glycome is vast, and despite advancements in analytic strategies it continues to be difficult to decipher biological roles of glycans with respect to specific glycan structures, type of glycoconjugate, particular glycoproteins, and distinct glycosites on proteins. In contrast to this, the number of glycosyltransferase genes involved in the biosynthesis of the human glycome is manageable, and the biosynthetic roles of most of these enzymes are defined or can be predicted with reasonable confidence. Thus, with the availability of the facile CRISPR/Cas9 gene editing tool it now seems easier to approach investigation of the functions of the glycome through genetic dissection of biosynthetic pathways, rather than by direct glycan analysis. However, obstacles still remain with design and validation of efficient gene targeting constructs, as well as with the interpretation of results from gene targeting and the translation of gene function to glycan structures. This is especially true for glycosylation steps covered by isoenzyme gene families. Here, we present a library of validated high-efficiency gRNA designs suitable for individual and combinatorial targeting of the human glycosyltransferase genome together with a global view of the predicted functions of human glycosyltransferases to facilitate and guide gene targeting strategies in studies of the human glycome.


Assuntos
Sistemas CRISPR-Cas/genética , Biblioteca Gênica , Glicosiltransferases/genética , RNA Guia de Cinetoplastídeos/genética , Glicosiltransferases/metabolismo , Células HEK293 , Humanos , RNA Guia de Cinetoplastídeos/metabolismo , Reprodutibilidade dos Testes
5.
Prog Mol Biol Transl Sci ; 152: 49-67, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29150004

RESUMO

The introduction of CRISPR/Cas9 gene editing in mammalian cells is a scientific breakthrough, which has greatly affected basic research and gene therapy. The simplicity and general access to CRISPR/Cas9 reagents has in an unprecedented manner "democratized" gene targeting in biomedical research, enabling genetic engineering of any gene in any cell, tissue, organ, and organism. The ability for fast, precise, and efficient profiling of the double-stranded break induced insertions and deletions (indels), mediated by any of the available programmable nucleases, is paramount to any given gene targeting approach. In this study we review the most commonly used indel detection methods and using a robust, sensitive, and cost efficient Indel Detection by Amplicon Analysis method, we have investigated the impact of the most commonly used CRISPR/Cas9 delivery formats, including lentivirus transduction, plasmid lipofection, and ribo nuclear protein electroporation, on the dynamics of indel profile formation. We observe rapid indel formation using RNP electroporation, especially with synthetic stabilized gRNA, as well as long-term decline in overall indel frequency with lipofectamine-based, plasmid transfection methods. Most methods reach peak editing on day 2-3 postdelivery. Furthermore, we find relative increase in frequency of larger size indels (>6bp) under condition of persistent editing using stably integrated lentiviral gRNA and Cas9 vectors.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Mutação INDEL , Reparo do DNA , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...