Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(6): 114287, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38823018

RESUMO

Viral infection triggers several double-stranded RNA (dsRNA) sensors that lead to changes in gene expression in the cell. One of these sensors activates an endonuclease, ribonuclease L (RNase L), that cleaves single-stranded RNA. However, how the resultant widespread RNA fragmentation affects gene expression is not fully understood. Here, we show that this fragmentation induces the ribotoxic stress response via ZAKα, potentially through stalled ribosomes and/or ribosome collisions. The p38 and JNK pathways that are activated as part of this response promote outcomes that inhibit the virus, such as programmed cell death. We also show that RNase L limits the translation of stress-responsive genes. Intriguingly, we found that the activity of the generic endonuclease, RNase A, recapitulates many of the same molecular phenotypes as activated RNase L, demonstrating how widespread RNA cleavage can evoke an antiviral program.

2.
iScience ; 27(1): 108477, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38205261

RESUMO

Toxoplasma gondii causes morbidity, mortality, and disseminates widely via cat sexual stages. Here, we find T. gondii ornithine aminotransferase (OAT) is conserved across phyla. We solve TgO/GABA-AT structures with bound inactivators at 1.55 Å and identify an inactivator selective for TgO/GABA-AT over human OAT and GABA-AT. However, abrogating TgO/GABA-AT genetically does not diminish replication, virulence, cyst-formation, or eliminate cat's oocyst shedding. Increased sporozoite/merozoite TgO/GABA-AT expression led to our study of a mutagenized clone with oocyst formation blocked, arresting after forming male and female gametes, with "Rosetta stone"-like mutations in genes expressed in merozoites. Mutations are similar to those in organisms from plants to mammals, causing defects in conception and zygote formation, affecting merozoite capacitation, pH/ionicity/sodium-GABA concentrations, drawing attention to cyclic AMP/PKA, and genes enhancing energy or substrate formation in TgO/GABA-AT-related-pathways. These candidates potentially influence merozoite's capacity to make gametes that fuse to become zygotes, thereby contaminating environments and causing disease.

3.
bioRxiv ; 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693516

RESUMO

Viral infection triggers several dsRNA sensors that lead to changes in gene expression in the cell. One of these sensors activates an endonuclease, RNase L, that cleaves single stranded RNA. However, how the resultant widespread RNA fragmentation affects gene expression is not fully understood. Here we show that this fragmentation induces the Ribotoxic Stress Response via ZAKα, potentially through ribosome collisions. The p38 and JNK pathways that are activated as part of this response promote outcomes that inhibit the virus, such as programmed cell death. We also show that RNase L limits the translation of stress-responsive genes, including antiviral IFIT mRNAs and GADD34 that encodes an antagonist of the Integrated Stress Response. Intriguingly, we found the activity of the generic endonuclease, RNase A, recapitulates many of the same molecular phenotypes as activated RNase L, demonstrating how widespread RNA cleavage can evoke an antiviral program.

4.
bioRxiv ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36789428

RESUMO

Pro-inflammatory T cells co-express multiple chemokine receptors, but the distinct functions of individual receptors on these cells are largely unknown. Human Th17 cells uniformly express the chemokine receptor CCR6, and we discovered that the subgroup of CD4+CCR6+ cells that co-express CCR2 possess a pathogenic Th17 signature, can produce inflammatory cytokines independent of TCR activation, and are unusually efficient at transendothelial migration (TEM). The ligand for CCR6, CCL20, was capable of binding to activated endothelial cells (ECs) and inducing firm arrest of CCR6+CCR2+ cells under conditions of flow - but CCR6 could not mediate TEM. By contrast, CCL2 and other ligands for CCR2, despite being secreted from both luminal and basal sides of ECs, failed to bind to the EC surfaces - and CCR2 could not mediate arrest. Nonetheless, CCR2 was required for TEM. To understand if CCR2's inability to mediate arrest was due solely to an absence of EC-bound ligands, we generated a CCL2-CXCL9 chimeric chemokine that could bind to the EC surface. Although display of CCL2 on the ECs did indeed lead to CCR2-mediated arrest of CCR6+CCR2+ cells, activating CCR2 with surface-bound CCL2 blocked TEM. We conclude that mediating arrest and TEM are mutually exclusive activities of chemokine receptors and/or their ligands that depend, respectively, on chemokines that bind to the EC luminal surfaces versus non-binding chemokines that form transendothelial gradients under conditions of flow. Our findings provide fundamental insights into mechanisms of lymphocyte extravasation and may lead to novel strategies to block or enhance their migration into tissue.

5.
J Infect Dis ; 224(7): 1236-1246, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32239170

RESUMO

Vertical transmission of maternal microbes is a major route for establishing the gut microbiome in newborns. The impact of perinatal antibiotics on vertical transmission of microbes and antimicrobial resistance is not well understood. Using a metagenomic approach, we analyzed the fecal samples from mothers and vaginally delivered infants from a control group (10 pairs) and a treatment group (10 pairs) receiving perinatal antibiotics. Antibiotic-usage had a significant impact on the main source of inoculum in the gut microbiome of newborns. The control group had significantly more species transmitted from mothers to infants (P = .03) than the antibiotic-treated group. Approximately 72% of the gut microbial population of infants at 3-7 days after birth in the control group was transmitted from their mothers, versus only 25% in the antibiotic-treated group. In conclusion, perinatal antibiotics markedly disturbed vertical transmission and changed the source of gut colonization towards horizontal transfer from the environment to the infants.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Transmissão Vertical de Doenças Infecciosas , Antibacterianos/efeitos adversos , Estudos de Casos e Controles , Farmacorresistência Bacteriana/efeitos dos fármacos , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Lactente , Recém-Nascido , Metagenômica , Parto , Gravidez
6.
Artigo em Inglês | MEDLINE | ID: mdl-32626661

RESUMO

Apicomplexan infections cause substantial morbidity and mortality, worldwide. New, improved therapies are needed. Herein, we create a next generation anti-apicomplexan lead compound, JAG21, a tetrahydroquinolone, with increased sp3-character to improve parasite selectivity. Relative to other cytochrome b inhibitors, JAG21 has improved solubility and ADMET properties, without need for pro-drug. JAG21 significantly reduces Toxoplasma gondii tachyzoites and encysted bradyzoites in vitro, and in primary and established chronic murine infections. Moreover, JAG21 treatment leads to 100% survival. Further, JAG21 is efficacious against drug-resistant Plasmodium falciparum in vitro. Causal prophylaxis and radical cure are achieved after P. berghei sporozoite infection with oral administration of a single dose (2.5 mg/kg) or 3 days treatment at reduced dose (0.625 mg/kg/day), eliminating parasitemia, and leading to 100% survival. Enzymatic, binding, and co-crystallography/pharmacophore studies demonstrate selectivity for apicomplexan relative to mammalian enzymes. JAG21 has significant promise as a pre-clinical candidate for prevention, treatment, and cure of toxoplasmosis and malaria.


Assuntos
Parasitos , Toxoplasma , Toxoplasmose , Animais , Camundongos , Plasmodium falciparum
7.
Front Cell Infect Microbiol ; 10: 617998, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33553008

RESUMO

Toxoplasma gondii is a common parasite of humans and animals, causing life-threatening disease in the immunocompromized, fetal abnormalities when contracted during gestation, and recurrent ocular lesions in some patients. Central to the prevalence and pathogenicity of this protozoan is its ability to adapt to a broad range of environments, and to differentiate between acute and chronic stages. These processes are underpinned by a major rewiring of gene expression, yet the mechanisms that regulate transcription in this parasite are only partially characterized. Deciphering these mechanisms requires a precise and comprehensive map of transcription start sites (TSSs); however, Toxoplasma TSSs have remained incompletely defined. To address this challenge, we used 5'-end RNA sequencing to genomically assess transcription initiation in both acute and chronic stages of Toxoplasma. Here, we report an in-depth analysis of transcription initiation at promoters, and provide empirically-defined TSSs for 7603 (91%) protein-coding genes, of which only 1840 concur with existing gene models. Comparing data from acute and chronic stages, we identified instances of stage-specific alternative TSSs that putatively generate mRNA isoforms with distinct 5' termini. Analysis of the nucleotide content and nucleosome occupancy around TSSs allowed us to examine the determinants of TSS choice, and outline features of Toxoplasma promoter architecture. We also found pervasive divergent transcription at Toxoplasma promoters, clustered within the nucleosomes of highly-symmetrical phased arrays, underscoring chromatin contributions to transcription initiation. Corroborating previous observations, we asserted that Toxoplasma 5' leaders are among the longest of any eukaryote studied thus far, displaying a median length of approximately 800 nucleotides. Further highlighting the utility of a precise TSS map, we pinpointed motifs associated with transcription initiation, including the binding sites of the master regulator of chronic-stage differentiation, BFD1, and a novel motif with a similar positional arrangement present at 44% of Toxoplasma promoters. This work provides a critical resource for functional genomics in Toxoplasma, and lays down a foundation to study the interactions between genomic sequences and the regulatory factors that control transcription in this parasite.


Assuntos
Toxoplasma , Animais , Sequência de Bases , Humanos , Regiões Promotoras Genéticas , Análise de Sequência de RNA , Toxoplasma/genética , Sítio de Iniciação de Transcrição
8.
mSphere ; 4(4)2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366709

RESUMO

Toxoplasma gondii tachyzoites co-opt host cell functions through introduction of a large set of rhoptry- and dense granule-derived effector proteins. These effectors reach the host cytosol through different means: direct injection for rhoptry effectors and translocation across the parasitophorous vacuolar membrane (PVM) for dense granule (GRA) effectors. The machinery that translocates these GRA effectors has recently been partially elucidated, revealing three components, MYR1, MYR2, and MYR3. To determine whether other proteins might be involved, we returned to a library of mutants defective in GRA translocation and selected one with a partial defect, suggesting it might be in a gene encoding a new component of the machinery. Surprisingly, whole-genome sequencing revealed a missense mutation in a gene encoding a known rhoptry protein, a serine/threonine protein kinase known as ROP17. ROP17 resides on the host cytosol side of the PVM in infected cells and has previously been known for its activity in phosphorylating and thereby inactivating host immunity-related GTPases. Here, we show that null or catalytically dead mutants of ROP17 are defective in GRA translocation across the PVM but that translocation can be rescued "in trans" by ROP17 delivered by other tachyzoites infecting the same host cell. This strongly argues that ROP17's role in regulating GRA translocation is carried out on the host cytosolic side of the PVM, not within the parasites or lumen of the parasitophorous vacuole. This represents an entirely new way in which the different secretory compartments of Toxoplasma tachyzoites collaborate to modulate the host-parasite interaction.IMPORTANCE When Toxoplasma infects a cell, it establishes a protective parasitophorous vacuole surrounding it. While this vacuole provides protection, it also serves as a barrier to the export of parasite effector proteins that impact and take control of the host cell. Our discovery here that the parasite rhoptry protein ROP17 is necessary for export of these effector proteins provides a distinct, novel function for ROP17 apart from its known role in protecting the vacuole. This will enable future research into ways in which we can prevent the export of effector proteins, thereby preventing Toxoplasma from productively infecting its animal and human hosts.


Assuntos
Interações Hospedeiro-Parasita/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Vacúolos/parasitologia , Fatores de Virulência/metabolismo , Células Cultivadas , Humanos , Mutação de Sentido Incorreto , Proteínas de Protozoários/genética , Toxoplasma/genética , Translocação Genética , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
9.
Sci Rep ; 9(1): 10635, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337807

RESUMO

Altogether, 20-30% of women receive intrapartum antibiotic prophylaxis (IAP) to prevent sepsis in infants and 2-5% of newborn infants receive antibiotics due to suspected sepsis. Caesarean section has a long-term impact on the intestinal microbiome but the effects of perinatal antibiotics on gut microbiome in vaginally delivered infants are not well known. We compared the impact of IAP, postnatal antibiotics, or their combination on the gut microbiome and emergence of antimicrobial resistance in a controlled study of 149 newborn infants recruited within 24 hours after birth. We collected 659 fecal samples, including 426 daily samples from infants before discharge from the hospital and 111 follow-up samples at six months. Penicillin was mostly used for IAP and the combination of penicillin and aminoglycoside for postnatal treatment. Postnatal antibiotic groups received Lactobacillus reuteri probiotic. Newborn gut colonization differed in both IAP and postnatal antibiotics groups as compared to that in control group. The effect size of IAP was comparable to that caused by postnatal antibiotics. The observed differences were still present at six months and not prevented by lactobacilli consumption. Given the present clinical results, the impact of perinatal antibiotics on the subsequent health of newborn infants should be further evaluated.


Assuntos
Aminoglicosídeos/uso terapêutico , Antibacterianos/uso terapêutico , Antibioticoprofilaxia/métodos , Farmacorresistência Bacteriana/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Sepse Neonatal/prevenção & controle , Penicilinas/uso terapêutico , Cuidado Pós-Natal , Adulto , Quimioterapia Combinada , Fezes/microbiologia , Feminino , Seguimentos , Microbioma Gastrointestinal/genética , Humanos , Lactente , Recém-Nascido , Masculino , Parto Normal , Gravidez , Estudos Prospectivos , Nascimento a Termo , Adulto Jovem
10.
PLoS One ; 14(7): e0220057, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31318956

RESUMO

Human Parainfluenza viruses (HPIV) type 1 and 3 are important causes of respiratory tract infections in young children globally. HPIV infections do not confer complete protective immunity so reinfections occur throughout life. Since no effective vaccine is available for the two virus subtypes, comprehensive understanding of HPIV-1 and HPIV-3 genetic and epidemic features is important for diagnosis, prevention, and treatment of HPIV-1 and HPIV-3 infections. Relatively few whole genome sequences are available for both HPIV-1 and HPIV-3 viruses, so our study sought to provide whole genome sequences from multiple countries to further the understanding of the global diversity of HPIV at a whole-genome level. We collected HPIV-1 and HPIV-3 samples and isolates from Argentina, Australia, France, Mexico, South Africa, Switzerland, and USA from the years 2003-2011 and sequenced the genomes of 40 HPIV-1 and 75 HPIV-3 viruses with Sanger and next-generation sequencing with the Ion Torrent, Illumina, and 454 platforms. Phylogenetic analysis showed that the HPIV-1 genome is evolving at an estimated rate of 4.97 × 10-4 mutations/site/year (95% highest posterior density 4.55 × 10-4 to 5.38 × 10-4) and the HPIV-3 genome is evolving at a similar rate (3.59 × 10-4 mutations/site/year, 95% highest posterior density 3.26 × 10-4 to 3.94 × 10-4). There were multiple genetically distinct lineages of both HPIV-1 and 3 circulating on a global scale. Further surveillance and whole-genome sequencing are greatly needed to better understand the spatial dynamics of these important respiratory viruses in humans.


Assuntos
Genoma Viral , Genômica , Vírus da Parainfluenza 1 Humana/genética , Vírus da Parainfluenza 3 Humana/genética , Evolução Molecular , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia , Recombinação Genética , Seleção Genética , Análise de Sequência de DNA
11.
Sci Rep ; 9(1): 9911, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289321

RESUMO

Over the course of a mission to the International Space Station (ISS) crew members are exposed to a number of stressors that can potentially alter the composition of their microbiomes and may have a negative impact on astronauts' health. Here we investigated the impact of long-term space exploration on the microbiome of nine astronauts that spent six to twelve months in the ISS. We present evidence showing that the microbial communities of the gastrointestinal tract, skin, nose and tongue change during the space mission. The composition of the intestinal microbiota became more similar across astronauts in space, mostly due to a drop in the abundance of a few bacterial taxa, some of which were also correlated with changes in the cytokine profile of crewmembers. Alterations in the skin microbiome that might contribute to the high frequency of skin rashes/hypersensitivity episodes experienced by astronauts in space were also observed. The results from this study demonstrate that the composition of the astronauts' microbiome is altered during space travel. The impact of those changes on crew health warrants further investigation before humans embark on long-duration voyages into outer space.


Assuntos
Astronautas , Bactérias/classificação , Bactérias/isolamento & purificação , Citocinas/sangue , DNA Bacteriano/análise , Microbiota , Saliva/microbiologia , Bactérias/genética , Monitoramento Ambiental , Humanos , Estudos Longitudinais , Voo Espacial/instrumentação , Fatores de Tempo
12.
mSphere ; 4(3)2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243081

RESUMO

CRISPR-Cas9 technologies have enabled genome engineering in an unprecedented array of species, accelerating biological studies in both model and nonmodel systems. However, Cas9 can be inherently toxic, which has limited its use in some organisms. We previously described the serendipitous discovery of a single guide RNA (sgRNA) that helped overcome Cas9 toxicity in the apicomplexan parasite Toxoplasma gondii, enabling the first genome-wide loss-of-function screens in any apicomplexan. Even in the presence of the buffering sgRNA, low-level Cas9 toxicity persists and results in frequent loss of Cas9 expression, which can affect the outcome of these screens. Similar Cas9-mediated toxicity has also been described in other organisms. We therefore sought to define the requirements for stable Cas9 expression, comparing different expression constructs and characterizing the role of the buffering sgRNA to understand the basis of Cas9 toxicity. We find that viral 2A peptides can substantially improve the selection and stability of Cas9 expression. We also demonstrate that the sgRNA has two functions: primarily facilitating integration of the Cas9-expression construct following initial genome targeting and secondarily improving long-term parasite fitness by alleviating Cas9 toxicity. We define a set of guidelines for the expression of Cas9 with improved stability and selection stringency, which are directly applicable to a variety of genetic approaches in diverse organisms. Our work also emphasizes the need for further characterizing the effects of Cas9 expression.IMPORTANCEToxoplasma gondii is an intracellular parasite that causes life-threatening disease in immunocompromised patients and affects the developing fetus when contracted during pregnancy. Closely related species cause malaria and severe diarrhea, thereby constituting leading causes for childhood mortality. Despite their importance to global health, this family of parasites has remained enigmatic. Given its remarkable experimental tractability, T. gondii has emerged as a model also for the study of related parasites. Genetic approaches are important tools for studying the biology of organisms, including T. gondii As such, the recent developments of CRISPR-Cas9-based techniques for genome editing have vastly expanded our ability to study the biology of numerous species. In some organisms, however, CRISPR-Cas9 has been difficult to implement due to its inherent toxicity. Our research characterizes the basis of the observed toxicity, using T. gondii as a model, allowing us to develop approaches to aid the use of CRISPR-Cas9 in diverse species.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Toxoplasma/genética , Técnicas de Inativação de Genes
13.
PLoS Pathog ; 14(1): e1006828, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357375

RESUMO

Toxoplasma gondii is an obligate intracellular parasite that can infect virtually all nucleated cells in warm-blooded animals. The ability of Toxoplasma tachyzoites to infect and successfully manipulate its host is dependent on its ability to transport "GRA" proteins that originate in unique secretory organelles called dense granules into the host cell in which they reside. GRAs have diverse roles in Toxoplasma's intracellular lifecycle, including co-opting crucial host cell functions and proteins, such as the cell cycle, c-Myc and p38 MAP kinase. Some of these GRA proteins, such as GRA16 and GRA24, are secreted into the parasitophorous vacuole (PV) within which Toxoplasma replicates and are transported across the PV membrane (PVM) into the host cell, but the translocation process and its machinery are not well understood. We previously showed that TgMYR1, which is cleaved by TgASP5 into two fragments, localizes to the PVM and is essential for GRA transport into the host cell. To identify additional proteins necessary for effector transport, we screened Toxoplasma mutants defective in c-Myc up-regulation for their ability to export GRA16 and GRA24 to the host cell nucleus. Here we report that novel proteins MYR2 and MYR3 play a crucial role in translocation of a subset of GRAs into the host cell. MYR2 and MYR3 are secreted into the PV space and co-localize with PV membranes and MYR1. Consistent with their predicted transmembrane domains, all three proteins are membrane-associated, and MYR3, but not MYR2, stably associates with MYR1, whose N- and C-terminal fragments are disulfide-linked. We further show that fusing intrinsically disordered effectors to a structured DHFR domain blocks the transport of other effectors, consistent with a translocon-based model of effector transport. Overall, these results reveal a novel complex at the PVM that is essential for effector translocation into the host cell.


Assuntos
Interações Hospedeiro-Parasita , Complexos Multiproteicos/metabolismo , Sistemas de Translocação de Proteínas/isolamento & purificação , Proteínas de Protozoários/isolamento & purificação , Toxoplasma/metabolismo , Fatores de Virulência/metabolismo , Animais , Células Cultivadas , Feminino , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/parasitologia , Macrófagos Peritoneais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Complexos Multiproteicos/genética , Organismos Geneticamente Modificados , Sistemas de Translocação de Proteínas/genética , Sistemas de Translocação de Proteínas/metabolismo , Transporte Proteico , Proteínas de Protozoários/metabolismo , Toxoplasma/genética , Toxoplasma/patogenicidade , Vacúolos/metabolismo
14.
Genome Announc ; 5(46)2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29146849

RESUMO

The apicomplexan parasite Besnoitia besnoiti is the causative agent of bovine besnoitiosis that affects livestock, particularly cattle. The definitive host of B. besnoiti is unknown and its transmission only partially understood. Here, we report the first draft genome sequence, assembly, and annotation of this parasite.

15.
Elife ; 62017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28826494

RESUMO

The malaria parasite Plasmodium falciparum and related apicomplexan pathogens contain an essential plastid organelle, the apicoplast, which is a key anti-parasitic target. Derived from secondary endosymbiosis, the apicoplast depends on novel, but largely cryptic, mechanisms for protein/lipid import and organelle inheritance during parasite replication. These critical biogenesis pathways present untapped opportunities to discover new parasite-specific drug targets. We used an innovative screen to identify actinonin as having a novel mechanism-of-action inhibiting apicoplast biogenesis. Resistant mutation, chemical-genetic interaction, and biochemical inhibition demonstrate that the unexpected target of actinonin in P. falciparum and Toxoplasma gondii is FtsH1, a homolog of a bacterial membrane AAA+ metalloprotease. PfFtsH1 is the first novel factor required for apicoplast biogenesis identified in a phenotypic screen. Our findings demonstrate that FtsH1 is a novel and, importantly, druggable antimalarial target. Development of FtsH1 inhibitors will have significant advantages with improved drug kinetics and multistage efficacy against multiple human parasites.


Assuntos
Antimaláricos/farmacologia , Apicoplastos/efeitos dos fármacos , Proteínas de Membrana/genética , Metaloproteases/genética , Plasmodium falciparum/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Toxoplasma/efeitos dos fármacos , Antibacterianos/farmacologia , Apicoplastos/metabolismo , Apicoplastos/ultraestrutura , Reposicionamento de Medicamentos , Resistência a Medicamentos , Eritrócitos/parasitologia , Fibroblastos/parasitologia , Expressão Gênica , Técnicas de Silenciamento de Genes , Ensaios de Triagem em Larga Escala , Humanos , Ácidos Hidroxâmicos/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/deficiência , Metaloproteases/antagonistas & inibidores , Metaloproteases/deficiência , Mutação , Testes de Sensibilidade Parasitária , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/metabolismo
16.
Front Microbiol ; 7: 2041, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066363

RESUMO

Trypanosoma cruzi chromosome ends are enriched in surface protein genes and pseudogenes (e.g., trans-sialidases) surrounded by repetitive sequences. It has been proposed that the extensive sequence variability among members of these protein families could play a role in parasite infectivity and evasion of host immune response. In previous reports we showed evidence suggesting that sequences located in these regions are subjected to recombination. To support this hypothesis we introduced a double-strand break (DSB) at a specific target site in a T. cruzi subtelomeric region cloned into an artificial chromosome (pTAC). This construct was used to transfect T. cruzi epimastigotes expressing the I-SceI meganuclease. Examination of the repaired sequences showed that DNA repair occurred only through homologous recombination (HR) with endogenous subtelomeric sequences. Our findings suggest that DSBs in subtelomeric repetitive sequences followed by HR between them may contribute to increased variability in T. cruzi multigene families.

17.
PLoS One ; 10(3): e0120098, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25793751

RESUMO

BACKGROUND: Human respiratory syncytial virus (RSV) is the leading cause of respiratory tract infections in children globally, with nearly all children experiencing at least one infection by the age of two. Partial sequencing of the attachment glycoprotein gene is conducted routinely for genotyping, but relatively few whole genome sequences are available for RSV. The goal of our study was to sequence the genomes of RSV strains collected from multiple countries to further understand the global diversity of RSV at a whole-genome level. METHODS: We collected RSV samples and isolates from Mexico, Argentina, Belgium, Italy, Germany, Australia, South Africa, and the USA from the years 1998-2010. Both Sanger and next-generation sequencing with the Illumina and 454 platforms were used to sequence the whole genomes of RSV A and B. Phylogenetic analyses were performed using the Bayesian and maximum likelihood methods of phylogenetic inference. RESULTS: We sequenced the genomes of 34 RSVA and 23 RSVB viruses. Phylogenetic analysis showed that the RSVA genome evolves at an estimated rate of 6.72 × 10(-4) substitutions/site/year (95% HPD 5.61 × 10(-4) to 7.6 × 10(-4)) and for RSVB the evolutionary rate was 7.69 × 10(-4) substitutions/site/year (95% HPD 6.81 × 10(-4) to 8.62 × 10(-4)). We found multiple clades co-circulating globally for both RSV A and B. The predominant clades were GA2 and GA5 for RSVA and BA for RSVB. CONCLUSIONS: Our analyses showed that RSV circulates on a global scale with the same predominant clades of viruses being found in countries around the world. However, the distribution of clades can change rapidly as new strains emerge. We did not observe a strong spatial structure in our trees, with the same three main clades of RSV co-circulating globally, suggesting that the evolution of RSV is not strongly regionalized.


Assuntos
Genoma Viral , Polimorfismo Genético , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Sequência de Bases , Evolução Molecular , Humanos , Dados de Sequência Molecular , Filogenia , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/isolamento & purificação
18.
BMC Genomics ; 15: 1168, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25532601

RESUMO

BACKGROUND: Toxoplasma gondii is a widespread protozoan parasite of animals that causes zoonotic disease in humans. Three clonal variants predominate in North America and Europe, while South American strains are genetically diverse, and undergo more frequent recombination. All three northern clonal variants share a monomorphic version of chromosome Ia (ChrIa), which is also found in unrelated, but successful southern lineages. Although this pattern could reflect a selective advantage, it might also arise from non-Mendelian segregation during meiosis. To understand the inheritance of ChrIa, we performed a genetic cross between the northern clonal type 2 ME49 strain and a divergent southern type 10 strain called VAND, which harbors a divergent ChrIa. RESULTS: NextGen sequencing of haploid F1 progeny was used to generate a genetic map revealing a low level of conventional recombination, with an unexpectedly high frequency of short, double crossovers. Notably, both the monomorphic and divergent versions of ChrIa were isolated with equal frequency. As well, ChrIa showed no evidence of being a sex chromosome, of harboring an inversion, or distorting patterns of segregation. Although VAND was unable to self fertilize in the cat, it underwent successful out-crossing with ME49 and hybrid survival was strongly associated with inheritance of ChrIII from ME49 and ChrIb from VAND. CONCLUSIONS: Our findings suggest that the successful spread of the monomorphic ChrIa in the wild has not been driven by meiotic drive or related processes, but rather is due to a fitness advantage. As well, the high frequency of short double crossovers is expected to greatly increase genetic diversity among progeny from genetic crosses, thereby providing an unexpected and likely important source of diversity.


Assuntos
Troca Genética , Variação Genética , Toxoplasma/genética , Animais , Gatos , Mapeamento Cromossômico , Cromossomos , Cruzamentos Genéticos , Evolução Molecular , Ligação Genética , Genoma de Protozoário , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Polimorfismo de Nucleotídeo Único , Recombinação Genética
19.
Int J Parasitol ; 44(7): 447-56, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24759431

RESUMO

The identification of new targets for vaccine and drug development for the treatment of Chagas' disease is dependent on deepening our understanding of the parasite genome. Vectors for genetic manipulation in Trypanosoma cruzi basically include those that remain as circular episomes and those that integrate into the parasite's genome. Artificial chromosomes are alternative vectors to overcome problematic transgene expression often occurring with conventional vectors in this parasite. We have constructed a series of vectors named pTACs (Trypanosome Artificial Chromosomes), all of them carrying telomeric and subtelomeric sequences and genes conferring resistance to different selection drugs. In addition, one pTAC harbours a modified GFP gene (pTAC-gfp), and another one carries the ornithine decarboxilase gene from Crithidia fasciculata (pTAC-odc). We have encountered artificial chromosomes generated from pTACs in transformed T. cruzi epimastigotes for every version of the designed vectors. These extragenomic elements, in approximately 6-8 copies per cell, remained as linear episomes, contained telomeres and persisted after 150 and 60 generations with or without selection drugs, respectively. The linear molecules remained stable through the different T. cruzi developmental forms. Furthermore, derived artificial chromosomes from pTAC-odc could complement the auxotrophy of T. cruzi for polyamines. Our results show that pTACs constitute useful tools for reverse functional genetics in T. cruzi that will contribute to a better understanding of T. cruzi biology.


Assuntos
Clonagem Molecular , Regulação da Expressão Gênica/fisiologia , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Animais , Cromossomos Artificiais , Camundongos , Organismos Geneticamente Modificados
20.
Genome Biol ; 14(7): R77, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23889909

RESUMO

BACKGROUND: Several eukaryotic parasites form cysts that transmit infection. The process is found in diverse organisms such as Toxoplasma, Giardia, and nematodes. In Entamoeba histolytica this process cannot be induced in vitro, making it difficult to study. In Entamoeba invadens, stage conversion can be induced, but its utility as a model system to study developmental biology has been limited by a lack of genomic resources. We carried out genome and transcriptome sequencing of E. invadens to identify molecular processes involved in stage conversion. RESULTS: We report the sequencing and assembly of the E. invadens genome and use whole transcriptome sequencing to characterize changes in gene expression during encystation and excystation. The E. invadens genome is larger than that of E. histolytica, apparently largely due to expansion of intergenic regions; overall gene number and the machinery for gene regulation are conserved between the species. Over half the genes are regulated during the switch between morphological forms and a key signaling molecule, phospholipase D, appears to regulate encystation. We provide evidence for the occurrence of meiosis during encystation, suggesting that stage conversion may play a key role in recombination between strains. CONCLUSIONS: Our analysis demonstrates that a number of core processes are common to encystation between distantly related parasites, including meiosis, lipid signaling and RNA modification. These data provide a foundation for understanding the developmental cascade in the important human pathogen E. histolytica and highlight conserved processes more widely relevant in enteric pathogens.


Assuntos
Entamoeba/citologia , Entamoeba/genética , Genoma de Protozoário/genética , Modelos Genéticos , Óvulo/metabolismo , Parasitos/genética , Transcriptoma/genética , Animais , Northern Blotting , Forma Celular/genética , DNA Intergênico/genética , Bases de Dados de Proteínas , Éxons/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Íntrons/genética , Fosfolipase D/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Estatística como Assunto , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...