Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Phys Chem A ; 127(13): 2946-2957, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36961364

RESUMO

Understanding charge transfer (CT) dynamics in molecular donor-acceptor (D-A) dyads can provide insight into developing efficient D-A molecules for capturing solar energy. Here, we characterize the excited-state evolution of a julolidine-BODIPY (Jul-BD) D-A system with an emissive CT state using time-resolved fluorescence, femtosecond transient absorption, and two-dimensional electronic spectroscopies. Comparison of these results with those from phenyl-BODIPY (Ph-BD) allows us to identify the dynamics at play during CT state formation and its subsequent conversion to either a fully charge-separated or triplet state. Photoexcitation of Jul-BD in tetrahydrofuran results in the formation of an initial emissive CT state that relaxes before fully charge-separating. In contrast, Jul-BD in toluene exhibits similar CT state dynamics, albeit at slower timescales, before decaying to a terminal triplet species. Quantum beat analysis at early times in both solvents shows several vibronic modes, which are corroborated using density functional theory (DFT) calculations. For Ph-BD, a single 220 cm-1 compression mode about the single bond linking the phenyl to BODIPY modulates their orbital overlap. Three active vibronic modes, 147, 174, and 214 cm-1, are found in Jul-BD, regardless of the dielectric constant of the medium. These motions correspond to compression and torsional motions along the single bond joining Jul to BD and are responsible for the evolution of the spontaneous and stimulated emission features in the time-resolved spectroscopic data, which is further supported by time-dependent DFT calculations of the steady-state absorption spectrum of the Jul-BD as a function of increasing D-A dihedral core angle. These findings show how torsional and compression motions can play a pivotal role in intramolecular CT between a D and an A linked by a single bond.

3.
J Am Chem Soc ; 144(6): 2685-2693, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35129331

RESUMO

Owing to their switchable spin states and dynamic electronic character, organic-based radical species have been invoked in phenomena unique to a variety of fields. When incorporated in solid state materials, generation of organic radicals proves challenging due to aggregation. Metal-organic frameworks (MOFs) are promising candidates for immobilization and stabilization of organic radicals because of the tunable spatial arrangement of organic linkers and metal nodes, which sequesters the reactive species. Herein, a flexible, redox-active tetracarboxylic acid linker bearing two imidazole units was chosen to construct a new Zr6-MOF, NU-910, with scu topology. By exploiting the structural flexibility of NU-910, we successfully modulate the dynamics between an isolated organic radical species and an organic radical π-dimer species in the MOF system. Single-crystal X-ray diffraction analysis reveals that through solvent exchange from N,N-diethylformamide to acetone, NU-910 undergoes a structural contraction with interlinker distances decreasing from 8.32 Å to 3.20 Å at 100 K. Organic radical species on the bridging linkers are generated via UV light irradiation. Direct observation of temperature-induced spin switches from an isolated radical species to a magnetically silent radical π-dimer in NU-910 after irradiation in the solid state was achieved via variable-temperature single-crystal X-ray diffraction and variable-temperature electron paramagnetic resonance spectroscopy. Ultraviolet-visible-near infrared spectroscopy and density functional theory calculations further substantiated the formation of a radical cation π-dimer upon irradiation. This work demonstrates the potential of using flexible MOFs as a platform to modulate radical spin states in the solid phase.

4.
J Am Chem Soc ; 143(18): 7050-7058, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33929834

RESUMO

Photogenerated molecular spin systems hold great promise for applications in quantum information science because they can be prepared in well-defined spin states at modest temperatures, they often exhibit long coherence times, and their properties can be tuned by chemical synthesis. Here, we investigate a molecular spin system composed of a 1,6,7,12-tetra(4-tert-butylphenoxy)perylene-3,4:9,10-bis(dicarboximide) (PDI) chromophore covalently linked to a stable nitroxide radical (TEMPO) by optical and electron paramagnetic resonance (EPR) techniques. Upon photoexcitation of the spin system, a quartet state is formed as confirmed by transient nutation experiments. This quartet state has spin polarization lifetimes longer than 0.1 ms and is characterized by relatively long coherence times of ∼1.8 µs even at 80 K. Rabi oscillation experiments reveal that more than 60 single-qubit logic operations can be performed with this system at 80 K. The large magnitude of the nitroxide 14N hyperfine coupling in the quartet state of PDI-TEMPO is resolved in the transient EPR spectra and leads to a further splitting of the quartet state electron spin sublevels. We discuss the properties of this photogenerated multilevel system, comprising 12 electron-nuclear spin states, in the context of its viability as a qubit for applications in quantum information science.

5.
J Am Chem Soc ; 143(12): 4625-4632, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33735563

RESUMO

The designing of tunable molecular systems that can host spin qubits is a promising strategy for advancing the development of quantum information science (QIS) applications. Photogenerated radical pairs are good spin qubit pair (SQP) candidates because they can be initialized in a pure quantum state that exhibits relatively long coherence times. DNA is a well-studied molecular system that allows for control of energetics and spatial specificity through careful design and thus serves as a tunable scaffold on which to control multispin interactions. Here, we examine a series of DNA hairpins that use naphthalenediimide (NDI) as the hairpin linker. Photoexcitation of the NDI leads to subnanosecond oxidation of guanine (G) within the duplex or a stilbenediether (Sd) end-cap to give NDI•--G•+ or NDI•--Sd•+ SQPs, respectively. A 2,2,6,6-tetramethylpiperdinyl-1-oxyl (TEMPO) stable radical is covalently attached to the hairpin at varying distances from the SQP spins. While TEMPO has a minimal effect on the SQP formation and decay dynamics, EPR spectroscopy indicates that there are significant spin-spin dipolar interactions between the SQP and TEMPO. We also demonstrate the ability to implement more complex spin manipulations of the NDI•--Sd•+-TEMPO system using pulse-EPR techniques, which is important for developing DNA hairpins for QIS applications.


Assuntos
DNA/química , Elétrons , Imidas/química , Naftalenos/química , Teoria Quântica , Estrutura Molecular , Processos Fotoquímicos
6.
Chemistry ; 27(8): 2683-2691, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32681763

RESUMO

Photogenerated multi-spin systems hold great promise for a range of technological applications in various fields, including molecular spintronics and artificial photosynthesis. However, the further development of these applications, via targeted design of materials with specific magnetic properties, currently still suffers from a lack of understanding of the factors influencing the underlying excited state dynamics and mechanisms on a molecular level. In particular, systematic studies, making use of different techniques to obtain complementary information, are largely missing. This work investigates the photophysics and magnetic properties of a series of three covalently-linked porphyrin-trityl compounds, bridged by a phenyl spacer. By combining the results from femtosecond transient absorption and electron paramagnetic resonance spectroscopies, we determine the efficiencies of the competing excited state reaction pathways and characterise the magnetic properties of the individual spin states, formed by the interaction between the chromophore triplet and the stable radical. The differences observed for the three investigated compounds are rationalised in the context of available theoretical models and the implications of the results of this study for the design of a molecular system with an improved intersystem crossing efficiency are discussed.

7.
J Phys Chem A ; 124(30): 6168-6176, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32551620

RESUMO

Switchable coupling between two qubits is important for quantum information science (QIS). As a proof of concept, a series of mesosubstituted porphyrins have been synthesized with a (2,2,6,6-tetramethylpiperidin-1-yl)oxyl stable free radical (SFR) appended and metalated with Cu(II), Ni(II), and Zn(II) in order to explore the interaction between the SFR doublet state and metalloporphyrin. The spin state of the porphyrin varies upon metal insertion, where Zn(II) is a diamagnetic metal, Cu(II) is paramagnetic, and Ni(II) can be switched from a diamagnetic square-planar structure to a paramagnetic octahedral state by complexation with a solvent (i.e., pyridine or tetrahydrofuran). Time-resolved electron paramagnetic resonance (EPR) measurements reveal that upon photoexcitation, the Zn(II) and free-base porphyrin species demonstrate different magnetic exchange regimes between the porphyrin triplet excited states and the SFR doublet state, with the Zn derivative populating a quartet state (i.e., moderate magnetic exchange), whereas the free-base derivative remains a triplet (i.e., weak magnetic exchange). Transient absorption measurements corroborate the TREPR results, demonstrating a 66% increase in the singlet excited-state decay rate due to enhanced intersystem crossing for the Zn(II) derivative in comparison to a modest 14% enhancement for the free-base porphyrin. These results enable the realization of a switchable qubit coupler, depending upon Zn metal insertion to the free-base porphyrin, which has potential QIS applications.

8.
J Am Chem Soc ; 142(7): 3346-3350, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32009396

RESUMO

Photoinduced electron transfer can produce radical pairs having two quantum entangled electron spins that can act as spin qubits in quantum information applications. Manipulation of these spin qubits requires selective addressing of each spin using microwave pulses. In this work, photogenerated spin qubit pairs are prepared within chromophore-modified DNA hairpins with varying spin qubit distances, and are probed using transient EPR spectroscopy. By performing pulse-EPR measurements on the shortest hairpin, selective addressing of each spin qubit comprising the pair is demonstrated. Furthermore, these spin qubit pairs have coherence times of more than 4 µs, which provides a comfortable time window for performing complex spin manipulations for quantum information applications. The applicability of these DNA-based photogenerated two-qubit systems is discussed in the context of quantum gate operations, specifically the controlled-NOT gate.


Assuntos
DNA/química , Radicais Livres/química , Sequências Repetidas Invertidas/efeitos da radiação , DNA/genética , DNA/efeitos da radiação , Radicais Livres/efeitos da radiação , Luz , Modelos Químicos , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...