Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(6): e5009, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38747379

RESUMO

PHPT1 is a histidine phosphatase that modulates signaling in eukaryotes through its catalytic activity. Here, we present an analysis of the structure and dynamics of PHPT1 through a combination of solution NMR, molecular dynamics, and biochemical experiments. We identify a salt bridge formed between the R78 guanidinium moiety and the C-terminal carboxyl group on Y125 that is critical for ligand binding. Disruption of the salt bridge by appending a glycine residue at the C-terminus (G126) leads to a decrease in catalytic activity and binding affinity for the pseudo substrate, para-nitrophenylphosphate (pNPP), as well as the active site inhibitor, phenylphosphonic acid (PPA). We show through NMR chemical shift, 15N relaxation measurements, and analysis of molecular dynamics trajectories, that removal of this salt bridge results in an active site that is altered both structurally and dynamically thereby significantly impacting enzymatic function and confirming the importance of this electrostatic interaction.


Assuntos
Domínio Catalítico , Simulação de Dinâmica Molecular , Especificidade por Substrato , Ressonância Magnética Nuclear Biomolecular , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Humanos
3.
Nat Commun ; 14(1): 2239, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076500

RESUMO

Allosteric drugs have the potential to revolutionize biomedicine due to their enhanced selectivity and protection against overdosage. However, we need to better understand allosteric mechanisms in order to fully harness their potential in drug discovery. In this study, molecular dynamics simulations and nuclear magnetic resonance spectroscopy are used to investigate how increases in temperature affect allostery in imidazole glycerol phosphate synthase. Results demonstrate that temperature increase triggers a cascade of local amino acid-to-amino acid dynamics that remarkably resembles the allosteric activation that takes place upon effector binding. The differences in the allosteric response elicited by temperature increase as opposed to effector binding are conditional to the alterations of collective motions induced by either mode of activation. This work provides an atomistic picture of temperature-dependent allostery, which could be harnessed to more precisely control enzyme function.


Assuntos
Glicerol , Simulação de Dinâmica Molecular , Sítio Alostérico , Regulação Alostérica , Aminoácidos , Imidazóis/química , Fosfatos
4.
Chem Sci ; 13(45): 13524-13540, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36507179

RESUMO

Protein tyrosine phosphatases (PTPs) possess a conserved mobile catalytic loop, the WPD-loop, which brings an aspartic acid into the active site where it acts as an acid/base catalyst. Prior experimental and computational studies, focused on the human enzyme PTP1B and the PTP from Yersinia pestis, YopH, suggested that loop conformational dynamics are important in regulating both catalysis and evolvability. We have generated a chimeric protein in which the WPD-loop of YopH is transposed into PTP1B, and eight chimeras that systematically restored the loop sequence back to native PTP1B. Of these, four chimeras were soluble and were subjected to detailed biochemical and structural characterization, and a computational analysis of their WPD-loop dynamics. The chimeras maintain backbone structural integrity, with somewhat slower rates than either wild-type parent, and show differences in the pH dependency of catalysis, and changes in the effect of Mg2+. The chimeric proteins' WPD-loops differ significantly in their relative stability and rigidity. The time required for interconversion, coupled with electrostatic effects revealed by simulations, likely accounts for the activity differences between chimeras, and relative to the native enzymes. Our results further the understanding of connections between enzyme activity and the dynamics of catalytically important groups, particularly the effects of non-catalytic residues on key conformational equilibria.

5.
PLoS One ; 17(4): e0267536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35452497

RESUMO

The bi-enzyme HisF-HisH heterodimer is part of the pathway that produces histidine and purines in bacteria and lower eukaryotes, but it is absent in mammals. This heterodimer has been largely studied probing the basis of the allosteric effects and the structural stability in proteins. It is also a potential target for antibacterial drugs. In this work, we developed a simple method to evaluate changes in the affinity between HisF and HisH in the heterodimer of the bacteria Thermotoga maritima. HisH contains a single tryptophan residue, which is exposed in the free protein, but buried in the heterodimer interface. Hence, the intrinsic fluorescence maximum of this residue changes to shorter wavelengths upon dimerization. Thus, we used the fluorescence intensity at this shorter wavelength to monitor heterodimer accumulation when HisH was combined with sub-stoichiometric HisF. Under conditions where the HisF-HisH heterodimer is in equilibrium with the free states of these enzymes, when [HisH] > [HisF], we deduced a linear function connecting [HisF-HisH] to [HisF], in which the slope depends on the heterodimer dissociation constant (Kd). Based on this equation, taking fluorescence intensities as proxies of the heterodimer and HisF concentrations, we experimentally determined the Kd at four different temperatures. These Kd values were compared to those evaluated using ITC. Both methods revealed an increase in the HisF and HisH binding affinity as the temperature increases. In spite of differences in their absolute values, the Kd determined using these methods presented an evident linear correlation. To demonstrate the effectiveness of the fluorescence method we determined the effect on the Kd caused by 12 single mutations in HisF. Coherently, this test singled out the only mutation in the binding interface. In brief, the method described here effectively probes qualitative effects on the Kd, can be carried out using common laboratory equipment and is scalable.


Assuntos
Aminoidrolases , Thermotoga maritima , Aminoidrolases/genética , Histidina/metabolismo
6.
J Mol Biol ; 434(17): 167540, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35339563

RESUMO

Understanding allostery in the Mycobacterium tuberculosis low molecular weight protein tyrosine phosphatase (MptpA) is a subject of great interest since MptpA is one of two protein tyrosine phosphatases (PTPs) from the pathogenic organism Mycobacterium tuberculosis expressed during host cell infection. Here, we combine computational modeling with solution NMR spectroscopy and we find that Q75 is an allosteric site. Removal of the polar side chain of Q75 by mutation to leucine results in a cascade of events that reposition the acid loop over the active site and relocates the catalytic aspartic acid (D126) at an optimal position for proton donation to the leaving aryl group of the substrate and for subsequent hydrolysis of the thiophosphoryl intermediate. The computational analysis is consistent with kinetic data, and NMR spectroscopy, showing that the Q75L mutant exhibits enhanced reaction kinetics with similar substrate binding affinity. We anticipate that our findings will motivate further studies on the possibility that MptpA remains passivated during the chronic state of infection and increases its activity as part of the pathogenic life cycle of M. tuberculosis possibly via allosteric means.


Assuntos
Proteínas de Bactérias , Mycobacterium tuberculosis , Proteínas Tirosina Fosfatases , Regulação Alostérica , Proteínas de Bactérias/química , Domínio Catalítico , Cinética , Mycobacterium tuberculosis/enzimologia , Proteínas Tirosina Fosfatases/química
7.
Chem ; 8(10): 2856-2887, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37396824

RESUMO

Highly substituted pyridine scaffolds are found in many biologically active natural products and therapeutics. Accordingly, numerous complementary de novo approaches to obtain differentially substituted pyridines have been disclosed. This article delineates the evolution of the synthetic strategies designed to assemble the demanding tetrasubstituted pyridine core present in the limonoid alkaloids isolated from Xylocarpus granatum, including xylogranatopyridine B, granatumine A and related congeners. In addition, NMR calculations suggested structural misassignment of several limonoid alkaloids, and predicted their C3-epimers as the correct structures, which was further validated unequivocally through chemical synthesis. The materials produced in this study were evaluated for cytotoxicity, anti-oxidant effects, anti-inflammatory action, PTP1B and Nlrp3 inflammasome inhibition, which led to compelling anti-inflammatory activity and anti-oxidant effects being discovered.

9.
Biochemistry ; 60(38): 2888-2901, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34496202

RESUMO

Conformational dynamics are important factors in the function of enzymes, including protein tyrosine phosphatases (PTPs). Crystal structures of PTPs first revealed the motion of a protein loop bearing a conserved catalytic aspartic acid, and subsequent nuclear magnetic resonance and computational analyses have shown the presence of motions, involved in catalysis and allostery, within and beyond the active site. The tyrosine phosphatase from the thermophilic and acidophilic Sulfolobus solfataricus (SsoPTP) displays motions of its acid loop together with dynamics of its phosphoryl-binding P-loop and the Q-loop, the first instance of such motions in a PTP. All three loops share the same exchange rate, implying their motions are coupled. Further evidence of conformational flexibility comes from mutagenesis, kinetics, and isotope effect data showing that E40 can function as an alternate general acid to protonate the leaving group when the conserved acid, D69, is mutated to asparagine. SsoPTP is not the first PTP to exhibit an alternate general acid (after VHZ and TkPTP), but E40 does not correspond to the sequence or structural location of the alternate general acids in those precedents. A high-resolution X-ray structure with the transition state analogue vanadate clarifies the role of the active site arginine R102, which varied in structures of substrates bound to a catalytically inactive mutant. The coordinated motions of all three functional loops in SsoPTP, together with the function of an alternate general acid, suggest that catalytically competent conformations are present in solution that have not yet been observed in crystal structures.


Assuntos
Proteínas Tirosina Fosfatases/genética , Sulfolobus solfataricus/enzimologia , Sequência de Aminoácidos/genética , Catálise , Domínio Catalítico/genética , Cristalografia por Raios X/métodos , Humanos , Cinética , Modelos Moleculares , Movimento (Física) , Fosforilação/genética , Conformação Proteica , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/ultraestrutura , Sulfolobus solfataricus/química , Sulfolobus solfataricus/metabolismo
10.
J Am Chem Soc ; 143(32): 12675-12687, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34346674

RESUMO

Proteogenomic identification of translated small open reading frames in humans has revealed thousands of microproteins, or polypeptides of fewer than 100 amino acids, that were previously invisible to geneticists. Hundreds of microproteins have been shown to be essential for cell growth and proliferation, and many regulate macromolecular complexes. However, the vast majority of microproteins remain functionally uncharacterized, and many lack secondary structure and exhibit limited evolutionary conservation. One such intrinsically disordered microprotein is NBDY, a 68-amino acid component of membraneless organelles known as P-bodies. In this work, we show that NBDY can undergo liquid-liquid phase separation, a biophysical process thought to underlie the formation of membraneless organelles, in the presence of RNA in vitro. Phosphorylation of NBDY drives liquid phase remixing in vitro and macroscopic P-body dissociation in cells undergoing growth factor signaling and cell division. These results suggest that NBDY phosphorylation enables regulation of P-body dynamics during cell proliferation and, more broadly, that intrinsically disordered microproteins may contribute to liquid-liquid phase separation and remixing behavior to affect cellular processes.


Assuntos
Proteínas Intrinsicamente Desordenadas/síntese química , Condensados Biomoleculares , Humanos , Proteínas Intrinsicamente Desordenadas/química , Tamanho da Partícula , Fosforilação
11.
J Struct Biol ; 213(3): 107773, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34320379

RESUMO

Centralities determined from Residue Interaction Networks (RIN) in proteins have been used to predict aspects of their structure and dynamics. Here, we correlate the Eigenvector Centrality (Ec) with the rate constant for thermal denaturation (kden) of the HisF protein from Thermotoga maritima based on 12 single alanine substitution mutants. The molecular basis for this correlation was further explored by studying a mutant containing a replacement of a high Ec residue, Y182A, which displayed increased kden at 80 °C. The crystallographic structure of this mutant showed few changes, mostly in two flexible loops. The 1H-15N -HSQC showed only subtle changes of cross peak positions for residues located near the mutation site and scattered throughout the structure. However, the comparison of the RIN showed that Y182 is the vertex of a set of high centrality residues that spreads throughout the HisF structure, which is lacking in the mutant. Cross-correlation displacements of Cα calculated from a molecular dynamics simulation at different temperatures showed that the Y182A mutation reduced the correlated movements in the HisF structure above 70 °C. 1H-15N NMR chemical shift covariance using temperature as perturbation were consistent with these results. In conclusion the increase in temperature drives the structure of the mutant HisF-Y182A into a less connected state, richer in non-concerted motions, located predominantly in the C-terminal half of the protein where Y182 is placed. Conversely, wild-type HisF responds to increased temperature as a single unit. Hence the replacement of a high Ec residue alters the distribution of thermal energy through HisF structure.


Assuntos
Proteínas , Thermotoga maritima , Modelos Moleculares , Conformação Proteica , Thermotoga maritima/genética
12.
Nat Commun ; 11(1): 2343, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393759

RESUMO

Ubiquitin mediated signaling contributes critically to host cell defenses during pathogen infection. Many pathogens manipulate the ubiquitin system to evade these defenses. Here we characterize a likely effector protein bearing a deubiquitylase (DUB) domain from the obligate intracellular bacterium Orientia tsutsugamushi, the causative agent of scrub typhus. The Ulp1-like DUB prefers ubiquitin substrates over ubiquitin-like proteins and efficiently cleaves polyubiquitin chains of three or more ubiquitins. The co-crystal structure of the DUB (OtDUB) domain with ubiquitin revealed three bound ubiquitins: one engages the S1 site, the second binds an S2 site contributing to chain specificity and the third binds a unique ubiquitin-binding domain (UBD). The UBD modulates OtDUB activity, undergoes a pronounced structural transition upon binding ubiquitin, and binds monoubiquitin with an unprecedented ~5 nM dissociation constant. The characterization and high-resolution structure determination of this enzyme should aid in its development as a drug target to counter Orientia infections.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Orientia tsutsugamushi/enzimologia , Tifo por Ácaros/microbiologia , Ubiquitinas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Lisina/metabolismo , Ligação Proteica , Domínios Proteicos , Especificidade por Substrato , Termodinâmica
14.
Biochemistry ; 59(20): 1896-1908, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32348128

RESUMO

Dynamics and conformational motions are important to the activity of enzymes, including protein tyrosine phosphatases. These motions often extend to regions outside the active site, called allosteric regions. In the tyrosine phosphatase Vaccinia H1-related (VHR) enzyme, we demonstrate the importance of the allosteric interaction between the variable insert region and the active-site loops in VHR. These studies include solution nuclear magnetic resonance, computation, steady-state, and rapid kinetic measurements. Overall, the data indicate concerted millisecond motions exist between the variable insert and the catalytic acid loop in wild-type (WT) VHR. The 150 ns computation studies show a flexible acid loop in WT VHR that opens during the simulation from its initial closed structure. Mutation of the variable insert residue, asparagine 74, to alanine results in a rigidification of the acid loop as observed by molecular dynamics simulations and a disruption of crucial active-site hydrogen bonds. Moreover, enzyme kinetic analysis shows a weakening of substrate affinity in the N74A mutant and a >2-fold decrease in substrate cleavage and hydrolysis rates. These data show that despite being nearly 20 Å from the active site, the variable insert region is linked to the acid loop by coupled millisecond motions, and that disruption of the communication between the variable insert and active site alters the normal catalytic function of VHR and perturbs the active-site environment.


Assuntos
Fosfatase 3 de Especificidade Dupla/metabolismo , Regulação Alostérica , Biocatálise , Fosfatase 3 de Especificidade Dupla/química , Fosfatase 3 de Especificidade Dupla/isolamento & purificação , Humanos , Hidrólise , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica
15.
J Biomol NMR ; 73(10-11): 561-576, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31280454

RESUMO

NMR relaxation dispersion experiments play a central role in exploring molecular motion over an important range of timescales, and are an example of a broader class of multidimensional NMR experiments that probe important biomolecules. However, resolving the spectral features of these experiments using the Fourier transform requires sampling the full Nyquist grid of data, making these experiments very costly in time. Practitioners often reduce the experiment time by omitting 1D experiments in the indirectly observed dimensions, and reconstructing the spectra using one of a variety of post-processing algorithms. In prior work, we described a fast, Fourier-based reconstruction method using iterated maps according to the Difference Map algorithm of Veit Elser (DiffMap). Here we describe coDiffMap, a new reconstruction method that is based on DiffMap, but which exploits the strong correlations between 2D data slices in a pseudo-3D experiment. We apply coDiffMap to reconstruct dispersion curves from an [Formula: see text] relaxation dispersion experiment, and demonstrate that the method provides fast reconstructions and accurate relaxation curves down to very low numbers of sparsely-sampled data points.


Assuntos
Análise de Fourier , Processamento de Imagem Assistida por Computador/métodos , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Algoritmos , Fatores de Tempo
16.
J Am Chem Soc ; 141(32): 12634-12647, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31339043

RESUMO

Active-site loops are integral to the function of numerous enzymes. They enable substrate and product binding and release, sequester reaction intermediates, and recruit catalytic groups. Here, we examine the catalytic loop in the enzyme protein tyrosine phosphatase 1B (PTP1B). PTP1B has a mobile so-called WPD loop (named for its three N-terminal residues) that initiates the dephosphorylation of phosphor-tyrosine substrates upon loop closure. We have combined X-ray crystallography, solution NMR, and pre-steady-state kinetics experiments on wild-type and five WPD loop mutants to identify the relationships between the loop structure, dynamics, and function. The motions of the WPD loop are modulated by the formation of weak molecular interactions, where perturbations of these interactions modulate the conformational equilibrium landscape. The point mutants in the WPD loop alter the loop equilibrium position from a predominantly open state (P185A) to 50:50 (F182A), 35:65 (P188A), and predominantly closed states (T177A and P188A). Surprisingly, there is no correlation between the observed catalytic rates in the loop mutants and changes to the WPD loop equilibrium position. Rather, we observe a strong correlation between the rate of dephosphorylation of the phosphocysteine enzyme intermediate and uniform millisecond motions, not only within the loop but also in the adjacent α-helical domain of PTP1B. Thus, the control of loop motion and thereby catalytic activity is dispersed and resides within not only the loop sequence but also the surrounding protein architecture. This has broad implications for the general mechanistic understanding of enzyme reactions and the role that flexible loops play in the catalytic cycle.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Biocatálise , Domínio Catalítico/genética , Cristalografia por Raios X , Humanos , Cinética , Mutação , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética
17.
J Biomol NMR ; 73(10-11): 545-560, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31292847

RESUMO

Many of the ubiquitous experiments of biomolecular NMR, including [Formula: see text], [Formula: see text], and CEST, involve acquiring repeated 2D spectra under slightly different conditions. Such experiments are amenable to acceleration using non-uniform sampling spectral reconstruction methods that take advantage of prior information. We previously developed one such technique, an iterated maps method (DiffMap) that we successfully applied to 2D NMR spectra, including [Formula: see text] relaxation dispersion data. In that prior work, we took a top-down approach to reconstructing the 2D spectrum with a minimal number of sparse samples, reaching an undersampling fraction that appeared to leave some room for improvement. In this study, we develop an in-depth understanding of the action of the DiffMap algorithm, identifying the factors that cause reconstruction errors for different undersampling fractions. This improved understanding allows us to formulate a bottom-up approach to finding the lowest number of sparse samples required to accurately reconstruct individual spectral features with DiffMap. We also discuss the difficulty of extending this method to reconstructing many peaks at once, and suggest a way forward.


Assuntos
Algoritmos , Ressonância Magnética Nuclear Biomolecular/métodos , Tamanho da Amostra , Manejo de Espécimes/métodos
18.
Proc Natl Acad Sci U S A ; 115(52): E12201-E12208, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30530700

RESUMO

Determining the principal energy-transfer pathways responsible for allosteric communication in biomolecules remains challenging, partially due to the intrinsic complexity of the systems and the lack of effective characterization methods. In this work, we introduce the eigenvector centrality metric based on mutual information to elucidate allosteric mechanisms that regulate enzymatic activity. Moreover, we propose a strategy to characterize the range of correlations that underlie the allosteric processes. We use the V-type allosteric enzyme imidazole glycerol phosphate synthase (IGPS) to test the proposed methodology. The eigenvector centrality method identifies key amino acid residues of IGPS with high susceptibility to effector binding. The findings are validated by solution NMR measurements yielding important biological insights, including direct experimental evidence for interdomain motion, the central role played by helix h[Formula: see text], and the short-range nature of correlations responsible for the allosteric mechanism. Beyond insights on IGPS allosteric pathways and the nature of residues that could be targeted by therapeutic drugs or site-directed mutagenesis, the reported findings demonstrate the eigenvector centrality analysis as a general cost-effective methodology to gain fundamental understanding of allosteric mechanisms at the molecular level.


Assuntos
Regulação Alostérica , Aminoidrolases/química , Proteínas de Bactérias/química , Sítio Alostérico , Modelos Moleculares , Modelos Teóricos , Ligação Proteica , Conformação Proteica
19.
Nucleic Acids Res ; 46(20): 10740-10756, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30239932

RESUMO

DNA polymerase ß (pol ß) fills single nucleotide gaps in DNA during base excision repair and non-homologous end-joining. Pol ß must select the correct nucleotide from among a pool of four nucleotides with similar structures and properties in order to maintain genomic stability during DNA repair. Here, we use a combination of X-ray crystallography, fluorescence resonance energy transfer and nuclear magnetic resonance to show that pol ß's ability to access the appropriate conformations both before and upon binding to nucleotide substrates is integral to its fidelity. Importantly, we also demonstrate that the inability of the I260Q mutator variant of pol ß to properly navigate this conformational landscape results in error-prone DNA synthesis. Our work reveals that precatalytic conformational rearrangements themselves are an important underlying mechanism of substrate selection by DNA pol ß.


Assuntos
Códon sem Sentido , DNA Polimerase beta/genética , Replicação do DNA/genética , DNA/química , Instabilidade Genômica/genética , Conformação de Ácido Nucleico , Substituição de Aminoácidos/genética , Catálise , Cristalografia por Raios X , DNA/metabolismo , DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , Reparo do DNA/genética , Transferência Ressonante de Energia de Fluorescência , Ácido Glutâmico/genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Isoleucina/genética , Modelos Moleculares , Nucleotídeos/química , Nucleotídeos/metabolismo , Ligação Proteica , Especificidade por Substrato/genética , Moldes Genéticos
20.
Biochemistry ; 57(36): 5315-5326, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30110154

RESUMO

To study factors that affect WPD-loop motion in protein tyrosine phosphatases (PTPs), a chimera of PTP1B and YopH was created by transposing the WPD loop from PTP1B to YopH. Several subsequent mutations proved to be necessary to obtain a soluble, active enzyme. That chimera, termed chimera 3, retains productive WPD-loop motions and general acid catalysis with a pH dependency similar to that of the native enzymes. Kinetic isotope effects show the mechanism and transition state for phosphoryl transfer are unaltered. Catalysis of the chimera is slower than that of either of its parent enzymes, although its rate is comparable to those of most native PTPs. X-ray crystallography and nuclear magnetic resonance were used to probe the structure and dynamics of chimera 3. The chimera's structure was found to sample an unproductive hyper-open conformation of its WPD loop, a geometry that has not been observed in either of the parents or in other native PTPs. The reduced catalytic rate is attributed to the protein's sampling of this conformation in solution, reducing the fraction in the catalytically productive loop-closed conformation.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Yersinia/enzimologia , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteínas Tirosina Fosfatases/genética , Proteínas Recombinantes de Fusão/genética , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...