Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res Lett ; 16(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34567238

RESUMO

Riverine floods are among the most costly natural disasters in the United States, and floods are generally projected to increase in frequency and magnitude with climate change. Faced with these increasing risks, improved information is needed to direct limited resources toward the most cost-effective adaptation actions available. Here we leverage a newly available flood risk dataset for residential properties in the conterminous United States to calculate expected annual damages to residential structures from inland/riverine flooding at a property-level; the cost of property-level adaptations to protect against future flood risk; and the benefits of those adaptation investments assuming both static and changing climate conditions. Our modeling projects that in the absence of adaptation, nationwide damages from riverine flooding will increase by 20-30% under high levels of warming. Floodproofing, elevation and property acquisition can each be cost-effective adaptations in certain situations, depending on the desired return on investment (i.e., benefit cost ratio), the discount rate, and the assumed rate of climate change. Incorporation of climate change into the benefit-cost calculation increases the number of properties meeting any specified benefit-cost threshold, as today's investments protect against an increasing frequency of future floods. However, because future expected damages are discounted relative to present-day, the adaptation decisions made based on a static climate assumption are very similar to the decisions made when climate change is considered. If the goal is to optimize adaptation decision making, a focus on quantifying present-day flood risk is therefore at least as important as understanding how those risks might change under a warming climate.

2.
Clim Risk Manag ; 29: 100233, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32832376

RESUMO

The National Coastal Property Model (NCPM) simulates flood damages resulting from sea level rise and storm surge along the contiguous U.S. coastline. The model also projects local-level investments in a set of adaptation measures under the assumption that these measures will be adopted when benefits exceed the costs over a 30-year period. However, it has been observed that individuals and communities often underinvest in adaptive measures relative to standard cost-benefit assumptions due to financial, psychological, sociopolitical, and technological factors. This study applies an updated version of the NCPM to incorporate improved cost-benefit tests and to approximate observed sub-optimal flood risk reduction behavior. The updated NCPM is tested for two multi-county sites: Virginia Beach, VA and Tampa, FL. Sub-optimal adaptation approaches slow the implementation of adaptation measures throughout the 100-year simulation and they increase the amount of flood damages, especially early in the simulation. The net effect is an increase in total present value cost of $1.1 to $1.3 billion (2015 USD), representing about a 10% increase compared to optimal adaptation approaches. Future calibrations against historical data and incorporation of non-economic factors driving adaptation decisions could prove useful in better understanding the impacts of continued sub-optimal behavior.

3.
Ecol Appl ; 30(1): e02005, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31532056

RESUMO

More than a century of dam construction and water development in the western United States has led to extensive ecological alteration of rivers. Growing interest in improving river function is compelling practitioners to consider ecological restoration when managing dams and water extraction. We developed an Ecological Response Model (ERM) for the Cache la Poudre River, northern Colorado, USA, to illuminate effects of current and possible future water management and climate change. We used empirical data and modeled interactions among multiple ecosystem components to capture system-wide insights not possible with the unintegrated models commonly used in environmental assessments. The ERM results showed additional flow regime modification would further alter the structure and function of Poudre River aquatic and riparian ecosystems due to multiple and interacting stressors. Model predictions illustrated that specific peak flow magnitudes in spring and early summer are critical for substrate mobilization, dynamic channel morphology, and overbank flows, with strong subsequent effects on instream and riparian biota that varied seasonally and spatially, allowing exploration of nuanced management scenarios. Instream biological indicators benefitted from higher and more stable base flows and high peak flows, but stable base flows with low peak flows were only half as effective to increase indicators. Improving base flows while reducing peak flows, as currently proposed for the Cache la Poudre River, would further reduce ecosystem function. Modeling showed that even presently depleted annual flow volumes can achieve substantially different ecological outcomes in designed flow scenarios, while still supporting social demands. Model predictions demonstrated that implementing designed flows in a natural pattern, with attention to base and peak flows, may be needed to preserve or improve ecosystem function of the Poudre River. Improved regulatory policies would include preservation of ecosystem-level, flow-related processes and adaptive management when water development projects are considered.


Assuntos
Ecossistema , Rios , Mudança Climática , Colorado , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...