Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 16281, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004864

RESUMO

Plants respond to insect eggs with transcriptional changes, resulting in enhanced defence against hatching larvae. However, it is unknown whether phylogenetically distant plant species show conserved transcriptomic responses to insect eggs and subsequent larval feeding. We used Generally Applicable Gene set Enrichment (GAGE) on gene ontology terms to answer this question and analysed transcriptome data from Arabidopsis thaliana, wild tobacco (Nicotiana attenuata), bittersweet nightshade (Solanum dulcamara) and elm trees (Ulmus minor) infested by different insect species. The different plant-insect species combinations showed considerable overlap in their transcriptomic responses to both eggs and larval feeding. Within these conformable responses across the plant-insect combinations, the responses to eggs and feeding were largely analogous, and about one-fifth of these analogous responses were further enhanced when egg deposition preceded larval feeding. This conserved transcriptomic response to eggs and larval feeding comprised gene sets related to several phytohormones and to the phenylpropanoid biosynthesis pathway, of which specific branches were activated in different plant-insect combinations. Since insect eggs and larval feeding activate conserved sets of biological processes in different plant species, we conclude that plants with different lifestyles share common transcriptomic alarm responses to insect eggs, which likely enhance their defence against hatching larvae.


Assuntos
Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Insetos , Nicotiana/fisiologia , Óvulo , Defesa das Plantas contra Herbivoria , Solanum/fisiologia , Ulmus/fisiologia , Animais , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Larva , Lepidópteros , Defesa das Plantas contra Herbivoria/fisiologia , Solanum/metabolismo , Nicotiana/metabolismo , Transcriptoma/fisiologia , Ulmus/metabolismo
2.
Front Plant Sci ; 11: 803, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625224

RESUMO

Induced plant responses to insect herbivores are well studied, but we know very little about responses to gastropod feeding. We aim to identify the temporal dynamics of signaling- and defense-related plant responses after slug feeding in relation to induced resistance. We exposed Solanum dulcamara plants to feeding by the gray field slug (GFS; Deroceras reticulatum) for different periods and tested disks of local and systemic leaves in preference assays. Induced responses were analyzed using metabolomics and transcriptomics. GFS feeding induced local and systemic responses. Slug feeding for 72 h more strongly affected the plant metabolome than 24 h feeding. It increased the levels of a glycoalkaloid (solasonine), phenolamides, anthocyanins, and trypsin protease inhibitors as well as polyphenol oxidase activity. Phytohormone and transcriptome analyses revealed that jasmonic acid, abscisic acid and salicylic acid signaling were activated. GFS feeding upregulated more genes than that it downregulated. The response directly after feeding was more than five times higher than after an additional 24 h without feeding. Our research showed that GFS, like most chewing insects, triggers anti-herbivore defenses by activating defense signaling pathways, resulting in increased resistance to further slug feeding. Slug herbivory may therefore impact other herbivores in the community.

3.
Plant Cell Environ ; 42(3): 1019-1032, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30252928

RESUMO

Plants can improve their antiherbivore defence by taking insect egg deposition as cue of impending feeding damage. Previous studies showed that Pieris brassicae larvae feeding upon egg-deposited Brassicaceae perform worse and gain less weight than larvae on egg-free plants. We investigated how P. brassicae oviposition on Arabidopsis thaliana affects the plant's molecular and chemical responses to larvae. A transcriptome comparison of feeding-damaged leaves without and with prior oviposition revealed about 200 differently expressed genes, including enhanced expression of PR5, which is involved in salicylic acid (SA)-signalling. SA levels were induced by larval feeding to a slightly greater extent in egg-deposited than egg-free plants. The adverse effect of egg-deposited wild-type (WT) plants on larval weight was absent in an egg-deposited PR5-deficient mutant or other mutants impaired in SA-mediated signalling, that is, sid2/ics1, ald1, and pad4. In contrast, the adverse effect of egg-deposited WT plants on larvae was retained in egg-deposited npr1 and wrky70 mutants impaired further downstream in SA-signalling. Oviposition induced accumulation of flavonols in WT plants with and without feeding damage, but not in the PR5-deficient mutant. We demonstrated that egg-mediated improvement of A. thaliana's antiherbivore defence involves SA-signalling in an NPR1-independent manner and is associated with accumulation of flavonols.


Assuntos
Herbivoria , Óvulo , Reguladores de Crescimento de Plantas/metabolismo , Fenômenos Fisiológicos Vegetais , Ácido Salicílico/metabolismo , Animais , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Borboletas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , Larva/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
4.
Int J Mol Sci ; 19(12)2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30513878

RESUMO

In nature, plants are frequently subjected to multiple biotic and abiotic stresses, resulting in a convergence of adaptive responses. We hypothesised that hormonal signalling regulating defences to different herbivores may interact with drought responses, causing distinct resistance phenotypes. To test this, we studied the hormonal and transcriptomic responses of Solanum dulcamara subjected to drought and herbivory by the generalist Spodoptera exigua (beet armyworm; BAW) or the specialist Leptinotarsa decemlineata (Colorado potato beetle; CPB). Bioassays showed that the performance of BAW, but not CPB, decreased on plants under drought compared to controls. While drought did not alter BAW-induced hormonal responses, it enhanced the CPB-induced accumulation of jasmonic acid and salicylic acid (SA), and suppressed ethylene (ET) emission. Microarray analyses showed that under drought, BAW herbivory enhanced several herbivore-induced responses, including cell-wall remodelling and the metabolism of carbohydrates, lipids, and secondary metabolites. In contrast, CPB herbivory enhanced several photosynthesis-related and pathogen responses in drought-stressed plants. This may divert resources away from defence production and increase leaf nutritive value. In conclusion, while BAW suffers from the drought-enhanced defences, CPB may benefit from the effects of enhanced SA and reduced ET signalling. This suggests that the fine-tuned interaction between the plant and its specialist herbivore is sustained under drought.


Assuntos
Secas , Herbivoria/fisiologia , Solanum/fisiologia , Animais , Análise por Conglomerados , Besouros/efeitos dos fármacos , Besouros/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Herbivoria/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Solanum/efeitos dos fármacos , Solanum/genética , Especificidade da Espécie , Spodoptera/efeitos dos fármacos , Spodoptera/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Transcrição Gênica/efeitos dos fármacos , Água
5.
Int J Mol Sci ; 19(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545097

RESUMO

Plant resistance traits against insect herbivores are extremely plastic. Plants respond not only to the herbivory itself, but also to oviposition by herbivorous insects. How prior oviposition affects plant responses to larval herbivory is largely unknown. Combining bioassays and defense protein activity assays with microarray analyses and metabolite profiling, we investigated the impact of preceding oviposition on the interaction of Solanum dulcamara with the generalist lepidopteran herbivore Spodoptera exigua at the levels of the plant's resistance, transcriptome and metabolome. We found that oviposition increased plant resistance to the subsequent feeding larvae. While constitutive and feeding-induced levels of defensive protease inhibitor activity remained unaffected, pre-exposure to eggs altered S. dulcamara's transcriptional and metabolic response to larval feeding in leaves local and systemic to oviposition. In particular, genes involved in phenylpropanoid metabolism were more strongly expressed in previously oviposited plants, which was reflected by reciprocal changes of primary metabolites upstream and within these pathways. Our data highlight that plants integrate signals from non-threatening life stages of their natural enemies to optimize their response when they become actually attacked. The observed transcriptional and metabolic reshaping of S. dulcamara's response to S. exigua herbivory suggests a role of phenylpropanoids in oviposition-primed plant resistance.


Assuntos
Herbivoria/fisiologia , Oviposição/fisiologia , Solanum/fisiologia , Spodoptera/fisiologia , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Herbivoria/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/fisiologia , Oviposição/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Propanóis/metabolismo , Inibidores de Proteases/farmacologia , Solanum/efeitos dos fármacos , Solanum/genética , Spodoptera/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
6.
Sci Rep ; 8(1): 10249, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980784

RESUMO

Oviposition by lepidopteran herbivores on Nicotiana attenuata primes plant defence responses that are induced by the feeding larvae. While oviposition by both the generalist Spodoptera exigua and the specialist Manduca sexta primes the production of defensive phenylpropanoids, their larvae are differentially affected. We investigate here the impact of prior oviposition on the transcriptome and phytohormone levels of plants that were later attacked by larvae to find regulatory signals of this priming. In a full-factorial design, we evaluated the effects of oviposition and herbivory by both species. Oviposition alone had only subtle effects at the transcriptional level. Laval feeding alone induced species-specific plant responses. Larvae of the generalist regulated phytohormones and gene expression stronger than larvae of the specialist. A day after larvae started to feed, we detected no significant alterations of the plant's response to larval feeding due to prior oviposition by conspecific moths. Yet, oviposition by each of the species profoundly influenced the plant's transcriptional and phytohormonal response to feeding larvae of the other species. Remarkably, the species-specific plant responses to larval feeding shifted towards the response normally elicited by larvae of the ovipositing species. Thus, plants may already recognise an insect's identity upon its oviposition.


Assuntos
Comportamento Alimentar/fisiologia , Larva/fisiologia , Mariposas/fisiologia , Nicotiana/imunologia , Oviposição/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Animais , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Herbivoria , Larva/efeitos dos fármacos , Manduca/fisiologia , Oviposição/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/parasitologia , Proteínas de Plantas/metabolismo , Especificidade da Espécie , Spodoptera/fisiologia , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Nicotiana/parasitologia
7.
Front Plant Sci ; 8: 1650, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018463

RESUMO

The redox imbalanced 6 mutant (rimb6) of Arabidopsis thaliana was isolated in a genetic screening approach for mutants with defects in chloroplast-to-nucleus redox signaling. It has an atypically low activation status of the 2-Cys peroxiredoxin-A promoter in the seedling stage. rimb6 shows wildtype-like germination, seedling development and greening, but slower growth and reduced biomass in the rosette stage. Mapping of the casual mutation revealed that rimb6 carries a single nucleotide polymorphism in the gene encoding CONSTITUTIVE EXPRESSER OF PATHOGENESIS RELATED (PR) GENES 1, CPR1 (At4g12560), leading to a premature stop codon. CPR1 is known as a repressor of pathogen signaling and regulator of microtubule organization. Allelism of rimb6 and cpr1 revealed a function of CPR1 in chloroplast stress protection. Expression studies in pathogen signaling mutants demonstrated that CPR1-mediated activation of genes for photosynthesis and chloroplast antioxidant protection is, in contrast to activation of pathogen responses, regulated independently from PAD4-controlled salicylic acid (SA) accumulation. We conclude that the support of plastid function is a basic, SA-independent function of CPR1.

8.
Plant Cell Environ ; 40(11): 2663-2677, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28667817

RESUMO

Plants can respond to insect oviposition, but little is known about which responses directly target the insect eggs and how. Here, we reveal a mechanism by which the bittersweet nightshade Solanum dulcamara kills the eggs of a generalist noctuid herbivore. The plant responded at the site of oviposition by Spodoptera exigua with formation of neoplasms and chlorotic tissue, accumulation of reactive oxygen species and induction of defence genes and proteins. Transcriptome analysis revealed that these responses were reflected in the transcriptional reprogramming of the egg-laden leaf. The plant-mediated egg mortality on S. dulcamara was not present on a genotype lacking chlorotic leaf tissue at the oviposition sites on which the eggs are exposed to less hydrogen peroxide. As exposure to hydrogen peroxide increased egg mortality, while catalase supplementation prevented the plants from killing the eggs, our results suggest that reactive oxygen species formation directly acts as an ovicidal plant response of S. dulcamara.


Assuntos
Herbivoria/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Óvulo/fisiologia , Solanum/parasitologia , Spodoptera/fisiologia , Animais , Quitosana/farmacologia , Ciclopentanos/farmacologia , Genes de Plantas , Umidade , Oviposição/efeitos dos fármacos , Oxilipinas/farmacologia , Ácido Salicílico/farmacologia , Solanum/efeitos dos fármacos , Solanum/genética , Spodoptera/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
9.
Mol Ecol Resour ; 17(6): e196-e211, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28449359

RESUMO

Plants are attacked by diverse herbivores and respond with manifold defence responses. To study transcriptional and other early regulation events of these plant responses, herbivory is often simulated to standardize the temporal and spatial dynamics that vary tremendously for natural herbivory. Yet, to what extent such simulations of herbivory are able to elicit the same plant response as real herbivory remains largely undetermined. We examined the transcriptional response of a wild model plant to herbivory by lepidopteran larvae and to a commonly used herbivory simulation by applying the larvae's oral secretions to standardized wounds. We designed a microarray for Solanum dulcamara and showed that the transcriptional responses to real and to simulated herbivory by Spodoptera exigua overlapped moderately by about 40%. Interestingly, certain responses were mimicked better than others; 60% of the genes upregulated but not even a quarter of the genes downregulated by herbivory were similarly affected by application of oral secretions to wounds. While the regulation of genes involved in signalling, defence and water stress was mimicked well by the simulated herbivory, most of the genes related to photosynthesis, carbohydrate- and lipid metabolism were exclusively regulated by real herbivory. Thus, wounding and application of oral secretions decently mimics herbivory-induced defence responses but likely not the reallocation of primary metabolites induced by real herbivory.


Assuntos
Perfilação da Expressão Gênica , Herbivoria , Solanum/fisiologia , Estresse Fisiológico , Animais , Comportamento Alimentar , Análise em Microsséries , Solanum/genética , Spodoptera/fisiologia
10.
BMC Ecol ; 17(1): 5, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28178961

RESUMO

BACKGROUND: Herbivore-induced changes in plant traits can cause indirect interactions between spatially and/or temporally separated herbivores that share the same host plant. Feeding modes of the herbivores is one of the major factors that influence the outcome of such interactions. Here, we tested whether the effects of transient aboveground herbivory for seven days by herbivores of different feeding guilds on tomato plants (Solanum lycopersicum) alters their interaction with spatially as well as temporally separated belowground herbivores. RESULTS: The transient aboveground herbivory by both chewing caterpillars (Spodoptera exigua) and sucking aphids (Myzus persicae) had significant impacts on plant traits such as plant growth, resource allocation and phytohormone contents. While the changes in plant traits did not affect the overall performance of the root-knot nematodes (Meloidogyne incognita) in terms of total number of galls, we found that the consequences of aboveground herbivory for the plants can be altered by the subsequent nematode herbivory. For example, plants that had hosted aphids showed compensatory growth when they were later challenged by nematodes, which was not apparent in plants that had hosted only aphids. In contrast, plants that had been fed by S. exigua larvae did not show such compensatory growth even when challenged by nematodes. CONCLUSION: The results suggest that the earlier aboveground herbivory can modify plant responses to subsequent herbivores, and such modifications may depend upon identity and/or feeding modes of the aboveground herbivores.


Assuntos
Afídeos/fisiologia , Solanum lycopersicum/parasitologia , Spodoptera/fisiologia , Animais , Comportamento Alimentar , Herbivoria , Interações Hospedeiro-Parasita , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia
11.
Curr Opin Insect Sci ; 14: 32-39, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27436644

RESUMO

The phytohormone jasmonic acid (JA) regulates the induction of direct and indirect defences against herbivores. By now, the biochemical pathway of JA-signalling has been well resolved, allowing the use of an interdisciplinary toolbox and spurring the mechanistic investigation of plant-insect interactions. Recent advances show that JA-mediated plant responses are involved in the competitive and trophic interactions between various organisms throughout at least four trophic levels and therefore likely shape natural communities. Moreover, JA-mediated responses can be primed or suppressed by various environmental factors that are related to herbivory or not. Yet, to integrate the complex interactions at the physiological and ecological levels into community ecology, an examination of the often onetime discoveries for general rules and new bioinformatic approaches are required.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Insetos/fisiologia , Plantas/química , Plantas/parasitologia , Animais , Ciclopentanos/metabolismo , Herbivoria , Oxilipinas/metabolismo , Fenômenos Fisiológicos Vegetais
12.
Nat Plants ; 2(5): 16056, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27243650

RESUMO

Plants usually close wounds rapidly to prevent infections and the loss of valuable resources such as assimilates(1). However, herbivore-inflicted wounds on the bittersweet nightshade Solanum dulcamara appear not to close completely and produce sugary wound secretions visible as droplets. Many plants across the plant kingdom secrete sugary nectar from extrafloral nectaries(2) to attract natural enemies of herbivores for indirect defence(3,4). As ants forage on wound edges of S. dulcamara in the field, we hypothesized that wound secretions are a form of extrafloral nectar (EFN). We show that, unlike EFN from known nectaries, wound secretions are neither associated with any specific structure nor restricted to certain locations. However, similar to EFN, they are jasmonate-inducible and the plant controls their chemical composition. Wound secretions are attractive for ants, and application of wound secretion mimics increases ant attraction and reduces herbivory on S. dulcamara plants in a natural population. In greenhouse experiments, we reveal that ants can defend S. dulcamara from two of its native herbivores, slugs and flea beetle larvae. Since nectar is defined by its ecological function as a sugary secretion involved in interactions with animals(5), such 'plant bleeding' could be a primitive mode of nectar secretion exemplifying an evolutionary origin of structured extrafloral nectaries.


Assuntos
Formigas/fisiologia , Herbivoria , Néctar de Plantas/metabolismo , Comportamento Predatório , Solanum/fisiologia , Animais , Quimiotaxia , Besouros/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Néctar de Plantas/química , Simbiose
13.
Plant Cell Environ ; 39(7): 1485-99, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26759219

RESUMO

In the field, biotic and abiotic stresses frequently co-occur. As a consequence, common molecular signalling pathways governing adaptive responses to individual stresses can interact, resulting in compromised phenotypes. How plant signalling pathways interact under combined stresses is poorly understood. To assess this, we studied the consequence of drought and soil flooding on resistance of Solanum dulcamara to Spodoptera exigua and their effects on hormonal and transcriptomic profiles. The results showed that S. exigua larvae performed less well on drought-stressed plants than on well-watered and flooded plants. Both drought and insect feeding increased abscisic acid and jasmonic acid (JA) levels, whereas flooding did not induce JA accumulation. RNA sequencing analyses corroborated this pattern: drought and herbivory induced many biological processes that were repressed by flooding. When applied in combination, drought and herbivory had an additive effect on specific processes involved in secondary metabolism and defence responses, including protease inhibitor activity. In conclusion, drought and flooding have distinct effects on herbivore-induced responses and resistance. Especially, the interaction between abscisic acid and JA signalling may be important to optimize plant responses to combined drought and insect herbivory, making drought-stressed plants more resistant to insects than well-watered and flooded plants.


Assuntos
Secas , Inundações , Herbivoria , Solanum/metabolismo , Estresse Fisiológico , Ácido Abscísico/metabolismo , Animais , Ciclopentanos/metabolismo , Etilenos/metabolismo , Insetos , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...