Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 12(2): e12302, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36788785

RESUMO

Human blood plasma prepared by centrifugation contains not only extracellular vesicles (EVs) but also platelets and erythrocyte ghosts (ery-ghosts). Here we studied whether analysis of miRNA associated with plasma EVs (EV-miRNA) is affected by the presence of platelets and ery-ghosts. EDTA blood was collected from healthy donors (n = 3), and plasma was prepared by the centrifugation protocol recommended by the International Society on Thrombosis and Haemostasis (ISTH), and by a centrifugation protocol from an EV-miRNA expert lab (non-ISTH protocol). EVs were isolated from plasma by size-exclusion chromatography CL-2B (SEC2B), and concentrations of platelets, activated platelets, ery-ghosts and EVs (150-1000 nm) were measured by calibrated flow cytometry. Two EV-associated miRNAs (let7a-5p and miR-21-5p), and one platelet-associated miRNA (miR-223-3p), were measured by qRT-PCR. Measurements were performed with and without filtration using 0.8 µm track-etched filters to remove platelets and ery-ghosts from plasma and EV-enriched SEC fractions. Plasma prepared by both centrifugation protocols contained platelets and ery-ghosts, which co-migrated with EVs into the EV-enriched SEC2B fractions. Filtration removed platelets and ery-ghosts (>97%; p ≤ 0.05) and did not affect the EV concentrations (p > 0.17). The miRNA concentrations were 2-4-fold overestimated due to the presence of platelets but not ery-ghosts. Thus, filtration of human plasma is expected to improve comparability and reproducibility of quantitative EV-miRNA studies. Therefore, we recommend to measure and report the plasma concentration of platelets for EV-miRNA studies, and to filter plasma before downstream analyses or storage in biobanks.


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , MicroRNAs/genética , Reprodutibilidade dos Testes , Plaquetas , Plasma
2.
Vaccine ; 40(13): 2087-2098, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35177300

RESUMO

Pyroptosis is a recently discovered form of inflammatory programmed necrosis characterized by caspase-1-mediated and gasdermin D-dependent cell death leading to the release of pro-inflammatory cytokines such as Interleukin-1 beta (IL-1ß). Here, we evaluated whether pyroptosis could be exploited in DNA vaccination by incorporating a constitutively active variant of caspase-1 to the antigen-expressing DNA. In vitro, transfection with constitutively active caspase-1 DNA induced pro-IL-1ß maturation and IL-1ß release as well as gasdermin D-dependent cell death. To test active caspase-1 as a genetic adjuvant for the induction of antigen-specific T cell responses, mice were vaccinated intradermally with a DNA vaccine consisting of the active caspase-1 plasmid together with a plasmid encoding an ovalbumin-derived CD8 T cell epitope. Active caspase-1 accelerated and amplified antigen-specific CD8 T cell responses when administered simultaneously with the DNA vaccine at an equimolar dose. Moreover, upon challenge with melanoma cells expressing ovalbumin, mice vaccinated with the antigen vaccine adjuvanted with active caspase-1 showed significantly better survival compared to the non-adjuvanted group. In conclusion, we have developed a novel genetic adjuvant that for the first time employs the pyroptosis pathway to improve DNA vaccination against cancer.


Assuntos
Piroptose , Vacinas de DNA , Animais , Caspase 1/metabolismo , Inflamação , Interleucina-1beta , Camundongos , Ovalbumina , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...