Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8830, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632265

RESUMO

Face masks are essential in reducing the transmission of respiratory infections and bacterial filtration efficiency, a key parameter of mask performances, requires the use of Staphylococcus aureus and specialised staff. This study aims to develop a novel method for a preliminary screening of masks or materials filtration efficiency by a green, easy and rapid setup based on the use of a riboflavin solution, a safe autofluorescent biomolecule. The proposed setup is composed of a commercial aerosol generator commonly used for aerosol therapy, custom 3D printed aerosol chamber and sample holder, a filter for downstream riboflavin detection and a vacuum pump. The filtration efficiency of four different masks was assessed using the riboflavin-based setup and the bacterial filtration efficiency (BFE). The averaged filtration efficiency values, measured with both methods, were similar but were higher for the riboflavin-based setup (about 2% for all tested samples) than bacterial filtration efficiency. Considering the good correlation, the riboflavin-based setup can be considered validated as an alternative method to bacterial filtration efficiency for masks and related materials fabrics filtration efficiency screening but This study aims to develop a novel method for a preliminary screening of masks or materials filtration efficiency by a green, easy and rapid setup based on the use of a riboflavin solution, a safe autofluorescent biomolecule, but not to replace regulation approaches. The proposed setup can be easily implemented at low price, is more rapid and eco-friendly and can be performed in chemical-physical laboratories without the needing of biosafety laboratory and specialised operators.


Assuntos
Máscaras , Dispositivos de Proteção Respiratória , Humanos , Aerossóis e Gotículas Respiratórios , Filtração , Aerossóis
2.
Heliyon ; 10(1): e23196, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163242

RESUMO

Face masks can filter droplets containing viruses and bacteria minimizing the transmission and spread of respiratory pathogens but are also an indirect source of microbes transmission. A novel antibacterial and antiviral Ag-coated polypropylene surgical mask obtained through the in situ and one-step deposition of metallic silver nanoparticles, synthesized by silver mirror reaction combined with sonication or agitation methods, is proposed in this study. SEM analysis shows Ag nanoparticles fused together in a continuous and dense layer for the coating obtained by sonication, whereas individual Ag nanoparticles around 150 nm were obtained combining the silver mirror reaction with agitation. EDX, XRD and XPS confirm the presence of metallic Ag in both coatings and also oxidized Ag in samples by agitation. A higher amount of Ag nanoparticles is deposited on samples by sonication, as calculated by TGA. Further, both coatings are biocompatible and show antibacterial properties: coating by sonication caused 24 % and 40 % of bacterial reduction while coating by agitation 48 % and 96 % against S. aureus and E. coli, respectively. At 1 min of contact with SARS-CoV-2, the coating by agitation has an antiviral capacity of 75 % against 24 % of the one by sonication. At 1 h, both coatings achieve 100 % of viral inhibition. Nonetheless, larger samples could be produced only through the silver mirror reaction combined with agitation, preserving the integrity of the mask. In conclusion, the silver-coated mask produced by silver mirror reaction combined with agitation is scalable, has excellent physico-chemical characteristics as well as significant biological properties, with higher antimicrobial activities, providing additional protection and preventing the indirect transmission of pathogens.

3.
J Funct Biomater ; 14(9)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37754873

RESUMO

Three-dimensional bioprinting has emerged as an attractive technology due to its ability to mimic native tissue architecture using different cell types and biomaterials. Nowadays, cell-laden bioink development or skin tissue equivalents are still at an early stage. The aim of the study is to propose a bioink to be used in skin bioprinting based on a blend of fibrinogen and alginate to form a hydrogel by enzymatic polymerization with thrombin and by ionic crosslinking with divalent calcium ions. The biomaterial ink formulation, composed of 30 mg/mL of fibrinogen, 6% of alginate, and 25 mM of CaCl2, was characterized in terms of homogeneity, rheological properties, printability, mechanical properties, degradation rate, water uptake, and biocompatibility by the indirect method using L929 mouse fibroblasts. The proposed bioink is a homogeneous blend with a shear thinning behavior, excellent printability, adequate mechanical stiffness, porosity, biodegradability, and water uptake, and it is in vitro biocompatible. The fibrinogen-based bioink was used for the 3D bioprinting of the dermal layer of the skin equivalent. Three different normal human dermal fibroblast (NHDF) densities were tested, and better results in terms of viability, spreading, and proliferation were obtained with 4 × 106 cell/mL. The skin equivalent was bioprinted, adding human keratinocytes (HaCaT) through bioprinting on the top surface of the dermal layer. A skin equivalent stained by live/dead and histological analysis immediately after printing and at days 7 and 14 of culture showed a tissuelike structure with two distinct layers characterized by the presence of viable and proliferating cells. This bioprinted skin equivalent showed a similar native skin architecture, paving the way for its use as a skin substitute for wound healing applications.

4.
Molecules ; 28(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37630233

RESUMO

Electrospinning is an easy and versatile technique to obtain nanofibrous membranes with nanosized fibers, high porosity, and pore interconnectivity. Metal nanoparticles (e.g., Ag, Cu, ZnO) exhibit excellent biocide properties due to their size, shape, release of metal ions, or reactive oxygen species production, and thus are often used as antimicrobial agents. In this study, a combined electrospinning/spray technique was employed to fabricate electrospun polyurethane membranes loaded with copper nanoparticles at different surface densities (10, 20, 25, or 30 µg/cm2). This method allows particle deposition onto the surface of the membranes without the use of chemical agents. SEM images showed that polyurethane fibers own homogeneous thickness (around 650 nm), and that spray-deposited copper nanoparticles are evenly distributed. STEM-EDX demonstrated that copper nanoparticles are deposited onto the surface of the fibers and are not covered by polyurethane. Moreover, a uniaxial rupture test showed that particles are firmly anchored to the electrospun fibers. Antibacterial tests against model microorganisms Escherichia coli indicated that the prepared electrospun membranes possess good bactericidal effect. Finally, the antiviral activity against SARS-CoV-2 was about 90% after 1 h of direct contact. The obtained results suggested that the electrospun membranes possess antimicrobial activities and can be used in medical and industrial applications.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , Cobre , Poliuretanos , SARS-CoV-2 , Antibacterianos/farmacologia , Escherichia coli
5.
Pharmaceutics ; 15(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37242573

RESUMO

Marine organisms (i.e., fish, jellyfish, sponges or seaweeds) represent an abundant and eco-friendly source of collagen. Marine collagen, compared to mammalian collagen, can be easily extracted, is water-soluble, avoids transmissible diseases and owns anti-microbial activities. Recent studies have reported marine collagen as a suitable biomaterial for skin tissue regeneration. The aim of this work was to investigate, for the first time, marine collagen from basa fish skin for the development of a bioink for extrusion 3D bioprinting of a bilayered skin model. The bioinks were obtained by mixing semi-crosslinked alginate with 10 and 20 mg/mL of collagen. The bioinks were characterised by evaluating the printability in terms of homogeneity, spreading ratio, shape fidelity and rheological properties. Morphology, degradation rate, swelling properties and antibacterial activity were also evaluated. The alginate-based bioink containing 20 mg/mL of marine collagen was selected for 3D bioprinting of skin-like constructs with human fibroblasts and keratinocytes. The bioprinted constructs showed a homogeneous distribution of viable and proliferating cells at days 1, 7 and 14 of culture evaluated by qualitative (live/dead) and qualitative (XTT) assays, and histological (H&E) and gene expression analysis. In conclusion, marine collagen can be successfully used to formulate a bioink for 3D bioprinting. In particular, the obtained bioink can be printed in 3D structures and is able to support fibroblasts and keratinocytes viability and proliferation.

6.
Int J Low Extrem Wounds ; : 15347346221138189, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380524

RESUMO

Treatment of chronic leg ulcers remains a major challenge and it is a substantial financial burden on individuals, families, caregivers, and health care system. There is increasing evidence on using of autologous Platelet-rich-plasma in wound repair but limited clinical data are available on the efficacy and safety of the use of umbilical cord blood platelet gel (CBPG). In our pilot study, for the first time, we aimed to evaluated the safety and efficacy of the use of umbilical CBPG combined with a hydrogel dressing in 10 patients with chronic venous ulcers (VU). The protocol consisted of application of umbilical cord blood platelet-rich plasma (PRP) combined with a Carboxymethyl cellulose (CMC)-based hydrogel dressing once a week for 4 weeks. The 80% of patients after 4 weeks of treatment had a significantly decrease in wound size. Moreover, we obtained an improvement in terms of mean Wound Bed Score (WBS), numeric rating scale (NRS) value and the EQ-5D index score. This pilot study showed that the topically therapeutic administration of umbilical CBPG associated with a CMC-based hydrogel dressing has the potential to accelerate the healing of chronic lesions without adverse reaction. However, additional studies with larger sample size and longer follow-up periods are required to confirm our findings.

7.
J Appl Biomater Funct Mater ; 20: 22808000221076326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35611488

RESUMO

Face masks are an effective protection tool to prevent bacterial and viral transmission. However, commercial face masks contain filters made of materials that are not capable of inactivating either SARS-CoV-2. In this regard, we report the development of an antiviral coating of polyurethane and Copper nanoparticles on a face mask filter fabricated with a spray technology that is capable of inactivating more than 99% of SARS-CoV-2 particles in 30 min of contact.


Assuntos
COVID-19 , Nanopartículas , COVID-19/prevenção & controle , Cobre , Humanos , Máscaras , Polímeros , SARS-CoV-2
8.
Pharmaceutics ; 14(2)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35213982

RESUMO

Plasminogen is a protein involved in intravascular and extravascular fibrinolysis, as well as in wound healing, cell migration, tissue formation and angiogenesis. In recent years its role in healing of tympanic perforations has been demonstrated in plasminogen deficient mice. The aim of this work was to fabricate a fibrin-based drug delivery system able to provide a local and sustained release of plasminogen at the wound site. Initially, the biological activity of plasminogen was evaluated by in vitro experiments on cell cultures. A metabolic assay (MTT) was carried out on L929 mouse fibroblast to determine the concentration that does not affect cell viability, which turned out to be 64 nM. The effect of plasminogen on cell migration was evaluated through a scratch test on human keratinocytes: cells treated with 64 nM plasminogen showed faster scratch closure than in complete medium. Fibrin scaffold loaded with plasminogen was fabricated by a spray process. SEM analysis showed the typical nano-fibrillar structure of a fibrin scaffold. Tensile tests highlighted significantly higher value of the ultimate stress and strain of fibrin scaffold with respect to fibrin clot. The in-vitro release kinetic showed an initial plasminogen burst, after that the release slowed, reaching a plateau at 7 days. Plasminogen-loaded fibrin scaffold applied in full-thickness diabetic mouse lesions showed a significantly higher closure rate at 14 days than scaffold used as a reference material. Histological analysis demonstrated an improved reepithelization and collagen deposition in granulation tissue in mouse treated with plasminogen-loaded fibrin scaffold in comparison to unloaded fibrin scaffold. The obtained results demonstrated the suitability of the fibrin scaffold loaded with plasminogen as drug delivery system and suggest its use in wound healing applications, such as for the treatment of chronic diabeticulcers.

9.
J Biomed Mater Res A ; 110(5): 1109-1120, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35061325

RESUMO

The biocompatibility and chemical stability of implantable devices are crucial for their long-term success. CarboSil® is a silicon polycarbonate polyurethane copolymer with good biocompatibility and biostability properties. Here, we explored the possibility to improve these characteristics by introducing 30% of extra-chain cross-linkable poly(dimethyl siloxane) (PDMS). Patches made of CarboSil and CarboSil-30% PDMS were manufactured by spray, phase-inversion technique and subjected to a heating-pressure treatment. Both materials showed good biocompatibility, either in viability and proliferation of cell-based experiments both with mouse fibroblasts and subcutaneous implant in rats. Fourier-transform infrared spectroscopy showed a significant decrease in soft segment loss in CarboSil-30% PDMS samples with respect to CarboSil in in vitro accelerated oxidative treatments with CoCl2 and 20% H2 O2 at 37°C up to 36 days. Same results were observed in subcutaneous implants up to 90 days. Field-emission scanning electron microscopy on samples exposed to calcification solutions during 80 days highlighted the presence of a homogeneous distribution of calcium deposition over the entire surface of CarboSil samples, while no calcium deposits were observed in CarboSil-30% PDMS samples. Patches subjected to subcutaneous experiments showed no sign of calcification after 90 days, irrespectively of their composition. Thanks to the improved characteristics in terms of degradation and calcification the modified materials described in this work hold great promise for their use in the manufacture of cardiovascular devices.


Assuntos
Poliuretanos , Silicones , Animais , Materiais Biocompatíveis/química , Dimetilpolisiloxanos , Camundongos , Estresse Oxidativo , Cimento de Policarboxilato , Poliuretanos/química , Ratos , Silicones/química
10.
Nanomaterials (Basel) ; 10(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120874

RESUMO

The present study examined the effects of a bilayered fibrin/poly(ether)urethane scaffold loaded with platelet lysate by a combination of electrospinning and spray, phase-inversion method for wound healing. In particular, the poly(ether)urethane layer was obtained using by a spray phase-inversion method and the fibrin fibers network were loaded with platelet lysate by electrospinning. The kinetics release and the bioactivity of growth factors released from platelet lysate-scaffold were investigated by ELISA and cell proliferation test using mouse fibroblasts, respectively. The in-vitro experiments demonstrated that a bilayered fibrin/poly(ether)urethane scaffold loaded with platelet lysate provides a sustained release of bioactive platelet-derived growth factors. The effect of a bilayered fibrin/poly(ether)urethane scaffold loaded with platelet lysate on wound healing in diabetic mouse (db/db) was also investigated. The application of the scaffold on full-thickness skin wounds significantly accelerated wound closure at day 14 post-surgery when compared to scaffold without platelet lysates or commercially available polyurethane film, and at the same level of growth factor-loaded scaffold. Histological analysis demonstrated an increased re-epithelialization and collagen deposition in platelet lysate and growth factor loaded scaffolds. The ability of bilayered fibrin/poly(ether)urethane scaffold loaded with platelet lysate to promote in-vivo wound healing suggests its usefulness in clinical treatment of diabetic ulcers.

11.
Sci Rep ; 10(1): 5111, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198419

RESUMO

Fibrin is an optimal scaffold for tissue-engineering applications because it mimics the extracellular matrix. Despite this interesting feature, fibrin gel owns only poor mechanical properties that limit its applications. Different approaches have been used for fibrin electrospinning, however all the methods investigated required washing steps, cross-linking agent treatment or immersion. The aim of this work was to produce a bilayered fibrin/polyurethane scaffold by combination of the electrospun method and the spray, phase-inversion method for the preparation of a fibrin nanostructured layer to be attached onto a poly(ether)urethane microporous support layer. The synthetic layer was obtained by the spray, phase-inversion technique onto a rotating metallic collector, while fibrinogen was processed to obtain a nanofibrous structure by electrospinning. Finally, fibrin polymerization was obtained by thrombin solution spraying onto the electrospun nanofibers. SEM analysis showed the formation of filamentous structure with diameter in the range of µm attached onto the synthetic layer. This scaffold could be applied in soft tissue regeneration such as wound healing or as drug delivery system.


Assuntos
Fibrina/metabolismo , Regeneração Tecidual Guiada/métodos , Poliuretanos/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Sistemas de Liberação de Medicamentos/métodos , Matriz Extracelular , Fibrinogênio/química , Teste de Materiais , Nanofibras/química , Trombina/química , Cicatrização/fisiologia
12.
Int Wound J ; 17(1): 65-72, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31665826

RESUMO

Platelets contain abundant growth factors and cytokines that have a positive influence on the migration and proliferation of different cell types by modulating its physiopathological processes. As it is known that human umbilical cord blood platelet lysate (UCB-PL) contains a supraphysiological concentration of growth factors, in the present study, we investigated its effectiveness in wound-healing processes. Human UCB-PL was obtained by the freeze/thaw of platelet concentrate (1.1 × 109 platelets/L), and its effect was evaluated on human or mouse endothelial cells, monocytes, fibroblasts, and keratinocytes in different concentrations. Human UCB-PL was observed to have high levels of pro-angiogenic growth factor than peripheral blood platelet-rich plasma. Among the cell lines, different concentrations of human UCB-PL were necessary to influence their viability and proliferation. For L929 cells, 5% of total volume was necessary, while for human umbilical vein endothelial cell, it was 10%. Cell migration on monocytes was increased with respect to the positive control, and scratch closure on keratinocytes was increased with respect to serum-free medium with only 10% of human UCB-PL. We concluded that the human UCB-PL may be useful to produce a large amount of standard platelet concentrates sufficient for several clinical-scale expansions avoiding inter-individual variability, which can also be used as a functional tool for clinical regenerative application for wound healing.


Assuntos
Plaquetas/química , Proliferação de Células/efeitos dos fármacos , Citocinas/uso terapêutico , Fatores de Crescimento Endotelial/uso terapêutico , Células Endoteliais da Veia Umbilical Humana/química , Plasma Rico em Plaquetas/química , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões/tratamento farmacológico , Proliferação de Células/fisiologia , Células Cultivadas/efeitos dos fármacos , Humanos , Cicatrização/fisiologia
13.
J Mech Behav Biomed Mater ; 97: 138-148, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31121432

RESUMO

The development of small-caliber grafts still represents a challenge in the field of vascular prostheses. Among other factors, the mechanical properties mismatch between natural vessels and artificial devices limits the efficacy of state-of-the-art materials. In this paper, a novel nanocomposite graft with an internal diameter of 6 mm is proposed. The device is obtained through spray deposition using a semi-interpenetrating polymeric network combining poly(ether)urethane and polydimethilsyloxane. The inclusion of BaTiO3 nanoparticles endows the scaffold with piezoelectric properties, which may be exploited in the future to trigger beneficial biological effects. Graft characterization demonstrated a good nanoparticle dispersion and an overall porosity that was not influenced by the presence of nanoparticles. Graft mechanical properties resembled (or even ameliorated) the ones of natural vessels: both doped and non-doped samples showed a Young's modulus of ∼700 kPa in the radial direction and ∼900 kPa in the longitudinal direction, an ultimate tensile strength of ∼1 MPa, a strain to failure of ∼700%, a suture retention force of ∼1.7 N and a flexural rigidity of ∼2.5 × 10-5 N m2. The two grafts differed in terms of burst strength that resulted ∼800 kPa for the control non-doped samples and ∼1100 kPa for the doped ones. The graft doped with BaTiO3 nanoparticles showed a d33 coefficient of 1.91 pm/V, almost double than the non-doped control. The device resulted highly stable, with a mass loss smaller than 2% over 3 months and an excellent biocompatibility.


Assuntos
Materiais Biocompatíveis/química , Elastômeros , Nanocompostos/química , Enxerto Vascular/instrumentação , Compostos de Bário/química , Módulo de Elasticidade , Eletricidade , Fibroblastos , Humanos , Nanopartículas , Pressão , Desenho de Prótese , Veia Safena/cirurgia , Estresse Mecânico , Resistência à Tração , Alicerces Teciduais , Titânio/química , Enxerto Vascular/métodos
14.
J Biomed Mater Res B Appl Biomater ; 107(4): 951-964, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30176112

RESUMO

Highly porous small-diameter vascular grafts (SDVGs) prepared with elastomeric materials such as poly(ether urethane) (PEtU)-polydimethylsiloxane (PEtU-PDMS) are capable to biodegrade but may develop aneurismal dilatation. Through a compliance/patency assessment with ultrasound techniques, the current study investigated the functionality, in terms of patency and endothelialization, of a highly flexible and porous Nitinol mesh incorporated into PEtU-PDMS SDVGs in a sheep carotid model. Nitinol-PEtU-PDMS grafts with an internal diameter (ID) of 4 mm were manufactured by spray, phase-inversion technique. Compliance tests were performed by ultrasound (US) imaging using a high-resolution ultrasound diagnostic system. Ten adult sheep were implanted with 7 cm long grafts. The results of this study demonstrated an almost complete neointima luminal coverage in transmurally porous grafts reinforced with the Nitinol meshes after 6 months of implantation. Additionally, ultrasound has been used to quantitatively assess and monitor hemodynamic variables in an experimental model of synthetic vascular graft replacement. The use of reinforced PEtU-PDMS grafts may accelerate the endothelialization process of relatively long grafts, such as those needed for aortocoronary bypass. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 951-964, 2019.


Assuntos
Ligas , Implante de Prótese Vascular , Prótese Vascular , Artérias Carótidas , Ponte de Artéria Coronária , Elastômeros , Animais , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/metabolismo , Artérias Carótidas/cirurgia , Porosidade , Ovinos
15.
Biomed Mater ; 10(4): 045014, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26238213

RESUMO

The capacity of a composite vascular graft constituting polyurethane (PU) and gelatin to support cell growth was investigated using human mesenchymal stem cells (hMSCs). Gelatin-based polyurethane grafts were fabricated by co-spraying polyurethane and gelatin using a spray, phase-inversion technique. Graft microstructure was investigated by light and scanning electron microscopy. Uniaxial tensile tests were performed to assess the grafts' mechanical properties in longitudinal and circumferential directions. hMSCs obtained from bone marrow aspirate were seeded onto flat graft samples. After 24, 48, and 72 h of incubation, cell morphology was evaluated by Giemsa staining and cell viability was calculated by XTT assay. SEM analysis evidenced that PU samples display a microporous structure, whereas the gelatin-based PU samples show a fibrillar appearance. The presence of cross-linked gelatin produced a significant increase of ultimate tensile strength and ultimate elongation in circumferential directions compared to PU material. Qualitative analysis of hMSC adhesion onto the grafts revealed remarkable differences between gelatin-based PU and control graft. hMSCs grown onto gelatin-based PU graft form a monolayer that reached confluence at 72 h, whereas cells seeded onto the control graft were not able to undergo appropriate spreading. hMSCs grown onto gelatin-based PU graft showed significantly higher viability than cells seeded onto bare PU at all time points. In conclusion, a composite vascular graft was successfully manufactured by simultaneous co-spraying of a synthetic polymer and a protein to obtain a scaffold that combines the mechanical characteristics of polyurethanes with the favorable cell interaction features of gelatin.


Assuntos
Materiais Biocompatíveis/síntese química , Prótese Vascular , Gelatina/química , Células-Tronco Mesenquimais/citologia , Poliuretanos/química , Enxerto Vascular/instrumentação , Tamanho Celular , Sobrevivência Celular , Células Cultivadas , Força Compressiva , Módulo de Elasticidade , Desenho de Equipamento , Análise de Falha de Equipamento , Gases/química , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/fisiologia , Transição de Fase , Impressão Tridimensional , Estresse Mecânico , Resistência à Tração
16.
PLoS One ; 10(4): e0125110, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25897753

RESUMO

Demineralized bone matrix (DBM) is widely used for bone regeneration. Since DBM is prepared in powder form its handling properties are not optimal and limit the clinical use of this material. Various synthetic and biological carriers have been used to enhance the DBM handling. In this study we evaluated the effect of gamma irradiation on the physical-chemical properties of Pluronic and on bone morphogenetic proteins (BMPs) amount in DBM samples. In vivo studies were carried out to investigate the effect on bone regeneration of a gamma irradiated DBM-Pluronic F127 (DBM-PF127) composite implanted in the femur of rats. Gamma irradiation effects (25 kGy) on physical-chemical properties of Pluronic F127 were investigated by rheological and infrared analysis. The BMP-2/BMP-7 amount after DBM irradiation was evaluated by ELISA. Bone regeneration capacity of DBM-PF127 containing 40% (w/w) of DBM was investigated in transcortical holes created in the femoral diaphysis of Wistar rat. Bone porosity, repaired bone volume and tissue organization were evaluated at 15, 30 and 90 days by Micro-CT and histological analysis. The results showed that gamma irradiation did not induce significant modification on physical-chemical properties of Pluronic, while a decrease in BMP-2/BMP-7 amount was evidenced in sterilized DBM. Micro-CT and histological evaluation at day 15 post-implantation revealed an interconnected trabeculae network in medullar cavity and cellular infiltration and vascularization of DBM-PF127 residue. In contrast a large rate of not connected trabeculae was observed in Pluronic filled and unfilled defects. At 30 and 90 days the DBM-PF127 samples shown comparable results in term of density and thickness of the new formed tissue respect to unfilled defect. In conclusion a gamma irradiated DBM-PF127 composite, although it may have undergone a significant decrease in the concentration of BMPs, was able to maintains bone regeneration capability.


Assuntos
Materiais Biocompatíveis/química , Matriz Óssea/efeitos da radiação , Regeneração Óssea/fisiologia , Poloxâmero/química , Animais , Biomarcadores/metabolismo , Densidade Óssea , Matriz Óssea/química , Matriz Óssea/fisiologia , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Fêmur/lesões , Fêmur/cirurgia , Raios gama , Expressão Gênica , Humanos , Masculino , Ratos , Ratos Wistar , Microtomografia por Raio-X
17.
J Biomed Mater Res A ; 103(10): 3284-92, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25809157

RESUMO

As the endothelium still represents the ideal surface for cardiovascular devices, different endothelialization strategies have been attempted for biocompatibility and nonthrombogenicity enhancement. Since endothelial progenitor cells (EPCs) could accelerate endothelialization, preventing thrombosis and restenosis, the aim of this study was to use oligonucleotides (ONs) to biofunctionalize stents for EPC binding. In order to optimize the functionalization procedure before its application to cobalt-chromium (Co/Cr) stents, discs of the same material were preliminarily used. Surface aminosilanization was assessed by infrared spectroscopy and scanning electron microscopy. A fluorescent endothelial-specific ON was immobilized on aminosilanized surfaces and its presence was visualized by confocal microscopy. Fluorescent ON binding to porcine blood EPCs was assessed by flow cytometry. Viability assay was performed on EPCs cultured on unmodified, nontargeting ON or specific ON-coated discs; fluorescent staining of nuclei and F-actin was then performed on EPCs cultured on unmodified or specific ON-coated discs and stents. Disc biofunctionalization significantly increased EPC viability as compared to both unmodified and nontargeting ON-coated surfaces; cell adhesion was also significantly increased. Stents were successfully functionalized with the specific ON, and EPC binding was confirmed by confocal microscopy. In conclusion, stent biofunctionalization for EPC binding was successfully achieved in vitro, suggesting its use to obtain in vivo endothelialization, exploiting the natural regenerative potential of the human body.


Assuntos
Ligas de Cromo/química , Células Endoteliais/metabolismo , Teste de Materiais , Oligonucleotídeos/química , Células-Tronco/metabolismo , Stents , Animais , Adesão Celular , Humanos , Suínos
18.
J Colloid Interface Sci ; 448: 501-7, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25778738

RESUMO

This paper reports on the preparation, characterization, and cytotoxicity of a hybrid nanocomposite material made of Sr(II)-loaded Halloysite nanotubes included within a biopolymer (3-polyhydroxybutyrate-co-3-hydroxyvalerate) matrix. The Sr(II)-loaded inorganic scaffold is intended to provide mechanical resistance, multi-scale porosity, and to favor the in-situ regeneration of bone tissue thanks to its biocompatibility and bioactivity. The interaction of the hybrid system with the physiological environment is mediated by the biopolymer coating, which acts as a binder, as well as a diffusional barrier to the Sr(II) release. The degradation of the polymer progressively leads to the exposure of the Sr(II)-loaded Halloysite scaffold, tuning its interaction with osteogenic cells. The in vitro biocompatibility of the composite was demonstrated by cytotoxicity tests on L929 fibroblast cells. The results indicate that this composite material could be of interest for multiple strategies in the field of bone tissue engineering.


Assuntos
Silicatos de Alumínio/química , Materiais Biocompatíveis/química , Preparações de Ação Retardada/química , Nanotubos/química , Poliésteres/química , Estrôncio/administração & dosagem , Silicatos de Alumínio/toxicidade , Animais , Materiais Biocompatíveis/toxicidade , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Argila , Preparações de Ação Retardada/toxicidade , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Camundongos , Nanocompostos/química , Nanocompostos/toxicidade , Nanocompostos/ultraestrutura , Nanotubos/toxicidade , Nanotubos/ultraestrutura , Poliésteres/toxicidade , Estrôncio/farmacologia
19.
J Mater Sci Mater Med ; 26(2): 96, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25652773

RESUMO

Autologous saphenous vein is still the conduit of choice for peripheral by-pass. Synthetic vascular grafts in polyethylene terephthalate and expanded polytetrafluoroethylene are used if vein access cannot be obtained. However they are successfully used to replace large diameter vessels, but they fail in small diameters (<6 mm). In the present study a bilayered synthetic vascular graft was developed. The graft was composed of an inner nanofibrous layer obtained by electrospinning able to host endothelial cells and a highly porous external layer obtained by spray, phase-inversion technique capable to sustain tunica media regeneration. Graft morphology and thickness, fiber size, pore size and layer adhesion strength were assessed. The innovative combination of two different consolidated techniques allowed to manufacture a nanostructured composite graft featuring a homogeneous microporous layer firmly attached on the top of the electrospun layer. By tuning the mechanical properties and the porosity of vascular prostheses, it will be possible to optimize the graft for in situ tissue regeneration while preventing blood leakage.


Assuntos
Materiais Biocompatíveis , Prótese Vascular , Materiais Biocompatíveis/química , Implante de Prótese Vascular , Força Compressiva , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Nanocompostos/química , Nanocompostos/ultraestrutura , Poliuretanos/química , Porosidade , Propriedades de Superfície , Resistência à Tração , Engenharia Tecidual , Alicerces Teciduais/química
20.
Acta Biomater ; 9(8): 7814-21, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23603001

RESUMO

Diabetic skin ulcers are difficult to heal spontaneously due to the reduced levels and activity of endogenous growth factors. Recombinant human vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are known to stimulate cell proliferation and accelerate wound healing. Direct delivery of VEGF and bFGF at the wound site in a sustained and controllable way without loss of bioactivity would enhance their biological effects. The aim of this study was to develop a poly(ether)urethane-polydimethylsiloxane/fibrin-based scaffold containing poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with VEGF and bFGF (scaffold/GF-loaded NPs) and to evaluate its wound healing properties in genetically diabetic mice (db/db). The scaffold application on full-thickness dorsal skin wounds significantly accelerated wound closure at day 15 compared to scaffolds without growth factors (control scaffold) or containing unloaded PLGA nanoparticles (scaffold/unloaded NPs). However, the closure rate was similar to that observed in mice treated with scaffolds containing free VEGF and bFGF (scaffold/GFs). Both scaffolds containing growth factors induced complete re-epithelialization, with enhanced granulation tissue formation/maturity and collagen deposition compared to the other groups, as revealed by histological analysis. The ability of the scaffold/GF-loaded NPs to promote wound healing in a diabetic mouse model suggests its potential use as a dressing in patients with diabetic foot ulcers.


Assuntos
Bandagens , Pé Diabético/tratamento farmacológico , Fibrina/química , Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Cicatrização/efeitos dos fármacos , Animais , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Pé Diabético/patologia , Combinação de Medicamentos , Fator 2 de Crescimento de Fibroblastos/química , Masculino , Teste de Materiais , Camundongos , Camundongos Transgênicos , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/química , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...