Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Pharmacol Drug Dev ; 8(6): 790-801, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30861337

RESUMO

GSK3389404 is a liver-targeted antisense oligonucleotide that inhibits synthesis of hepatitis B surface antigen and all other hepatitis B virus proteins. This first-in-human, randomized, double-blind, phase 1 study assessed the safety and pharmacokinetics of GSK3389404 administered subcutaneously (SC) in healthy subjects. Four single ascending-dose cohorts (10 mg, 30 mg, 60 mg, and 120 mg) and 3 multiple ascending-dose cohorts (30 mg, 60 mg, and 120 mg once weekly for 4 weeks) each comprised 6 subjects randomized to GSK3389404 and 2 subjects randomized to placebo. There were no serious adverse events (AEs) or withdrawals due to AEs. The safety profile did not worsen with repeated dosing. The most frequent treatment-related AEs were injection site reactions (19.0% [n = 8/42], frequency unrelated to dose levels); all were mild (Grade 1) and resolved without dose modification or discontinuation. GSK3389404 administered subcutaneously was readily absorbed with a time to maximum plasma concentration (Tmax ) of 1-4 hours and an elimination half-life of 3-6 hours in plasma. Plasma area under the concentration-time curve (AUC) and maximum observed concentration (Cmax ) were dose-proportional. Dose-normalized plasma AUC from time 0 to infinity averaged 69.9 ng·h/(mL·mg dose) across cohorts, and Cmax 9.5 ng/(mL·mg dose). Pharmacokinetic profiles and parameters were comparable between single and multiple dosing. No accumulation was observed with once-weekly dosing. The metabolite was undetectable in urine and plasma. In the pooled urine, GSK3389404 was estimated to account for <0.1% of the total dose. In summary, GSK3389404 dosing has been tested up to 120 mg for 4 weeks with an acceptable safety and pharmacokinetic profile, supporting further clinical investigation in patients with chronic hepatitis B.


Assuntos
Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/farmacocinética , Adulto , Área Sob a Curva , Relação Dose-Resposta a Droga , Método Duplo-Cego , Esquema de Medicação , Feminino , Meia-Vida , Voluntários Saudáveis , Humanos , Injeções Subcutâneas , Masculino , Pessoa de Meia-Idade , Oligonucleotídeos Antissenso/efeitos adversos , Tionucleotídeos , Adulto Jovem
2.
Biochem Cell Biol ; 83(2): 230-8, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15864331

RESUMO

We have developed a novel ex vivo system for the rapid one-step targeted modification of large eucaryotic DNA sequences. The highly recombinant environment resulting from infection of rabbit cornea cells with the Shope fibroma virus was exploited to mediate precise modifications of the complete chicken lysozyme gene domain (21.5 kb). Homologous recombination was designed to occur between target DNA (containing the complete lysozyme gene domain) maintained in a lambda bacteriophage vector and modified targeting DNA maintained in a plasmid. The targeting plasmids were designed to transfer exogenous sequences (for example, beta-galactosidase alpha-complement, green fluorescent protein, and hydrophobic tail coding sequences) to specific sites within the lysozyme gene domain. Cotransfection of the target phage and a targeting plasmid into Shope fibroma virus infected cells resulted in the poxvirus-mediated transfer of the modified sequences from plasmid to phage. Phage DNA (recombinant and nonrecombinant) was then harvested from the total cellular DNA by packaging into lambda phage particles and correct recombinants were identified. Four different gene-targeting pairings were carried out, and from 3% to 11% of the recovered phages were recombinant. Using this poxvirus-mediated targeting system, four different regions of the chicken lysozyme gene domain have been modified precisely by our research group overall with a variety of inserts (6-971 bp), deletions (584-3000 bp), and replacements. We have never failed to obtain the desired recombinant. Poxvirus-mediated recombination thus constitutes a routine, rapid, and remarkably efficient genetic engineering system for the precise modification of large eucaryotic gene domains when compared with traditional practices.


Assuntos
Vetores Genéticos/fisiologia , Muramidase/genética , Poxviridae/genética , Recombinação Genética , Animais , Bacteriófago lambda/genética , Células Cultivadas , Galinhas , Córnea/citologia , Córnea/metabolismo , Marcação de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Muramidase/metabolismo , Plasmídeos , Poxviridae/fisiologia , Coelhos , Transfecção , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
3.
Biochem Cell Biol ; 83(1): 49-60, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15746966

RESUMO

The -2.7 kb enhancer (E) element of the chicken lysozyme gene domain appears to govern expression of the gene in macrophages but not in oviduct tubular gland cells, the only other site of lysozyme expression. The ultimate goal of our research was to determine whether lysozyme domain variants could be developed that would mainly be expressed in the oviduct so that transgenic birds could be produced that would deposit exogenous protein in the egg white. Accordingly, precise mutations were made by poxvirus-mediated gene targeting in FEF/PU.1 and CCAAT/enhancer-binding protein (C/EBP) transcription factor binding sites in the -2.7 kb E of cloned copies of a specific lysozyme gene variant that includes a hydrophobic pentapeptide tail encoding sequence inserted immediately prior to the stop codon. This variant contains the entire lysozyme domain and is cloned in a lambda bacteriophage vector (lambdaDIILys-HT); the novel tail sequence enables distinction in cell-based expression systems between transcripts of the variant and those of the endogenous gene. These various lysozyme domain mutants, in bacteriophage vector form, were tested for expression in cultured chicken blastodermal cells cotransfected with plasmids encoding the transcription factors C/EBP and v-Myb. In the absence of these plasmids, barely detectable levels of endogenous lysozyme gene transcription resulted in the blastodermal cells. In the presence of the plasmids, however, transcripts of the endogenous gene could be detected as well as varying levels (as evaluated by quantitative real-time PCR) of transcripts of all of the lysozyme domain mutants. These results are discussed in the context of the known role and occurrence of various transcription factors involved in gene expression in differentiating macrophage cells. The ultimate test of expression of the variants in macrophages vs. oviduct cells will be to use them to produce transgenic birds.


Assuntos
Galinhas/genética , Engenharia Genética , Muramidase/genética , Muramidase/metabolismo , Oviductos/metabolismo , Animais , Sequência de Bases , Blastoderma/citologia , Feminino , Expressão Gênica , Dados de Sequência Molecular , Muramidase/biossíntese , Mutação , Especificidade de Órgãos , Reação em Cadeia da Polimerase , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...